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ABSTRACT

In order to extend knowledge of biological regulation mechanisms modeling,
it is necessary to investigate metabolic networks that control cellular processes.
Complexity of interactions between components of these networks makes
prediction of system behavior extremely challenging.

The study of a metabolic system dynamics includes parameter estimation of
the system. Due to a large number of reactions, non-linear interactions between
different metabolites, enzymes and other components of the system, parameters
estimation of metabolic systems can be formulated as non-linear programming
(NLP) problem.

The dissertation investigated parameter estimation of well-studied metabolic
systems using modern evolutionary techniques. It also included comparison of
algorithms performance in identifying model parameters. Furthermore, selected
evolutionary algorithms were applied to modeling of metabolic system with
unknown properties. The doctoral thesis provides a theoretical basis for the
study of metabolic networks. It also describes the application of evolutionary
algorithms to metabolic networks modeling problems.

Experimental part consisted of four case studies. In first three case studies
three evolutionary techniques namely Genetic Algorithm, Differential Evolution
and Self-Organizing Migrating Algorithm were applied to define parameters of
three well-studied metabolic systems: the urea cycle, a three-step pathway and
the model of glycogenolysis in skeletal muscle. The last case study included
parameter estimation of model of energy metabolism in human stem cell based
on experimentally measured data. This investigation is one of the main parts in
whole study of human stem cell metabolism, which is carried out in stem cell
laboratory in Masaryk University (Brno).

One of remarkable contributions of this study is the application of SOMA, a
novel evolutionary technique in bioscience, to optimization of kinetic
parameters in metabolic systems. Kinetic parameters of the urea cycle model
and model of glycogenolysis in skeletal muscle were firstly defined using
evolutionary techniques.

Overall, the results of modeling show that evolutionary algorithms provide an
effective approach in parameter estimation of metabolic models and could be
used even in large-scale problems.

Keywords: metabolic networks, evolutionary algorithms, parameter
estimation.



ABSTRAKT

Za Ucelem rozSiteni znalosti biologickych omezeni mechanismii modelovani
je nezbytné nutné prozkoumat metabolické sité, které tidi bunécné procesy.
SloZitost vazeb mezi jednotlivymi komponenty téchto siti d¢la predpoveéd
chovani systému extrémné komplikovanou.

Studium dynamiky metabolického syst¢ému zahrnuje identifikaci parametrli
systetmu. Na zikladé¢ vysokého poctu reakci, nelinearnich interakci mezi
riznymi metabolity, enzymy a jinymi komponenty systému miZeme posouzeni
parametri metabolickych systéml formulovat jako problém nelinearniho
programovani (NLP).

V disertatni praci zkoumame vykon modernich evolu¢nich metod v
identifikaci parametri znadmych metabolickych systémi. Navic jsou jesté
vybrané evolu¢ni algoritmy pouzity k modelovani metabolického systému s
neznamymi vlastnostmi.

Diserta¢ni prace poskytuje teoretickeé zaklady pro studium metabolickych siti.
Evolu¢ni algoritmy pouzit€ na problém modelovani metabolickych siti jsou
popsany v teoretické Casti.

Experimentalni ¢ast se sklada ze Ctyt studii. Tti evolucni techniky: Geneticky
Algoritmus, Diferencidlni Evoluce a SamoOrganizujici se Migracni
Algolritmus, jsou pouZity k definovani parametrii tfi znamych metabolickych
systéml: mocCovinovy cyklus, three-step pathway a glykogenolyza v kosterni
svalovin€. Jednou z unikatnich ptednosti této disertacni prace je novatorské
pouziti algoritmu SOMA, dosud nepouzit¢ho v oblasti bioscience, k definici
parametrl systému na zaklad¢ experimentalné ziskanych dat. Zaroven je naSe
studie jednou z hlavnich ¢asti vyzkumu metabolismu lidskych kmenovych
bunék.

Celkové vysledky modelovani ukazali, Ze evolu¢ni algoritmy poskytuji
efektivni pfistup v nalezeni parametri metabolickych modelli a mohou byt
aplikovany pii1 hledani feSeni rozsahlych problémii modelovani metabolickych
siti.

Kli¢ova slova: metabolické sité, evolu¢ni algoritmy, identifikace parametrii
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1 INTRODUCTION AND STATE OF ART

Cell is the main form of existence of life inherent in all living organisms,
except viruses. Cell is the only organism, which has capability to construct a
new cell out of raw materials from the environment based on the hereditary
information [1]. To understand cellular systems, dynamic modeling of cellular
processes has become an important task in systems biology. Cellular processes
are features that define cell as a unit of living being. There are a vast number of
different processes including cell division, cell death, cell cycle, differentiation,
proliferation, etc. More specifically, cellular processes include from gene to cell
level upwards: gene expression, transcription, translation, metabolism,
physiological, and immunological response and control processes [2].

In order to extend knowledge of the biological regulation mechanisms, it is
necessary to investigate large-scale biochemical, metabolic, signaling, protein,
mRNA and gene regulatory networks that control cellular processes [3]. The
complexity of interactions between components of the networks makes the
prediction of the system behavior extremely challenging.

The dissertation is mainly focused on metabolic networks. These complex
systems were chosen because of the fact that metabolic networks play a central
role in the control of cellular processes [4]. Understanding complex biological
networks requires the integration of experimental, theoretical research and
computational tools. Therefore, mathematical modeling and computational
simulation are now an indispensable part of modern biological investigation.

The use of computational modeling and simulation allow collection and
systematization of biological knowledge, the discovery of new relationships that
were not previously known and the revelation of new pathways. Good models
may lead to new conceptual developments in Biology. Overall, modeling and
simulation give us better understanding of biological interactions from both
qualitative and quantitative points of view [5].

There are three major difficulties to model such complex systems. These are
nonlinearity, a large scale, and stochasticity [6], [7]. To overcome these
problems, evolutionary algorithms (EAs) were applied on different metabolic
networks to define model parameters. In present study also investigated
performance of modern evolutionary techniques in parameter estimation of well-
studied metabolic systems. Moreover, selected evolutionary algorithms were
applied to metabolic system with unknown properties.

Recent studies have successfully applied metaheuristic approaches to
parameter optimization problem [8]-[10]. Researchers have used different types
of evolutionary techniques such as genetic algorithms (GA), evolutionary
programming (EP), differential evolution (DE), evolution strategies (ES), hybrid
strategies and others. These algorithms were applied to various types of
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biological networks: gene regulatory networks [4], [11]-[13], metabolic
networks [9], [10], [14], [15] and different biological models [16], [17].

GA is probably the most popular approach for parameter estimation among
systems biologists [18]. For instance, in [19] GA was used to estimate 18
unknown parameters of a signal transduction network described by the system
of ordinary differential equations (ODEs). In [20], GA was successfully applied
to define two parameters of glucose metabolism model consisted of insulin and
C-peptide experimental data. To define four kinetic parameters in dynamical
model of the human YMSAC mechanism, the authors used an evolutionary
optimization procedure [21]. The above-mentioned studies are examples of GA
application on parameter estimation of metabolic systems described by ODEs.
GA was also used for parameter estimation of genetic regulatory networks [11],
[22]. Overall, in many studies GA performance was improved by incorporating
biologist’s expert knowledge [18]. DE was applied in few comparison studies
[10], [23]. It should be noted that these studies, where traditional evolutionary
algorithms are compared, use the same benchmark problem. Evolutionary
techniques could perform differently on other metabolic systems. The choice of
objective function could also influence the result. Moreover, parameter
estimation process depends on a scale and nonlinearity of a problem. There are
few above-mentioned studies that apply EAs to real-world optimization
problems in metabolic modeling. Obviously, the question of effectiveness of
EAs application on parameter estimation of metabolic networks is still open.

In recent review [18], the authors provided comparison of different
optimization techniques and gave recommendations according to existing
results. In most studies new methods were suggested for model identification
and then compared with already existed techniques. Comparison of existing
metaheuristic methods could give more objective understanding of current state
of the problem. The authors also noted that a question of application different
types of EAs in a given problem type remains a matter of open research. New
optimization techniques and new examples are needed to improve current state
of the problem.

The dissertation investigates parameter estimation of three well-studied large-
scale metabolic systems using modern evolutionary techniques. It also includes
comparison of algorithms performance in identifying model parameters.
Furthermore, selected evolutionary algorithms are applied to modeling of
metabolic system with unknown properties.

This dissertation is divided into four main parts: introduction, theoretical part,
experimental part and conclusions.

First chapter provides an importance of studying metabolic networks,
especially the use of computational methods in this question. The chapter also
gives current state in application of evolutionary techniques for biological
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systems modeling. In the following second chapter, the dissertation goals are
outlined.

The theoretical part includes two chapters. Chapter 3 suggests an introduction
to metabolic modeling. In particular, it describes a place of metabolic modeling
in current bioscience, provides steps in metabolic reconstruction process, gives
basis of kinetic modeling and, finally, presents a common approach for analysis
of regulatory systems. Chapter 4 gives overview of evolutionary techniques,
applied in this dissertation.

The experimental part is divided into four case studies according to four
investigated metabolic systems. In chapter 5, we provide the case study 1, where
various evolutionary techniques are applied to parameter identification of the
urea cycle. The next chapter, chapter 6, describes case study 2: metabolic
modeling of a three-step pathway. Case study 3 in chapter 7 contains metabolic
modeling of glycogenolysis in skeletal muscle. The last chapter in experimental
part shows application of evolutionary techniques to metabolic modeling of
glycolysis in human stem cells with real experimental data.

Finally, chapter 9 provides conclusions, achieved goals of the dissertation and
future research related to the dissertation.
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2 DISSERTATION GOALS

The global aim of the research is to expand knowledge about modeling of
cellular processes. In particular, the main interests of the research are application
and evaluation of evolutionary algorithms performance used for parameter
estimation of various metabolic networks.

Subjects of the research:

1. Metabolic systems.

2. Methods for metabolic systems modeling.

3. Evolutionary algorithms and their application to biological systems
modeling problem.

Objectives of the research:

1. To apply various evolutionary techniques to modeling of well-studied
metabolic systems.

2. To evaluate and compare the performance of each algorithm.

3. To apply selected evolutionary techniques to estimate parameters of the
model of glycolysis in human stem cell based on real experimental
data.
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3 METABOLIC MODELING
3.1 Metabolic modeling — a key topic in Systems Biology

Systems biology is an integrative research area that focuses on the systematic
study of complex interactions in biological systems by combining experimental
and computational biology methods. The main objectives of systems biology are
to identify the molecular mechanisms of a complex biological system and to
obtain a quantitative description. In this rapidly developing area, predictive
mathematical models of metabolic systems are used for analysis of observed
experimental data, for extending biological knowledge or for providing
predictive simulations [24].

In recent years, the main directions in systems biology are synthesis of
specialty chemicals such as pharmaceuticals and biofuels, the development of
computational tools for metabolic engineering, the discovery of new enzyme
activities [6], [7]. The development of new computational methods for metabolic
engineering is widely appreciated.

Due to the continuous progress of high-throughput experimental and
computational technologies, the systems medicine approach became one of the
most developing research areas in modern bioscience [24]. This approach offers
the prospects of modeling complex diseases, providing new diagnostic and
therapeutic techniques, identifying new drug targets. Systems medicine allows
for better understanding associations between biological functions and different
diseases (e.g. immunological, inflammatory, infectious, neurological) [25].
Since metabolism plays an essential role in cell growth and proliferation, genes
regulating metabolism have been used as drug targets in the treatment of cancer
and other diseases involving metabolic disorders, including diabetes,
atherosclerosis and fatty liver disease [26]. Thus, understanding the human
metabolic system is important for the study and treatment of complex human
diseases. In order to extend our knowledge in study of complex human
metabolism-related diseases, it is necessary to reconstruct and analyze metabolic
networks.

Metabolic systems are highly non-linear with complex structure and
dynamics. The complexity of interactions between components of metabolic
system makes the prediction of the system behavior extremely challenging [18].
To overcome this challenge, many researchers use computational and
mathematical modeling methods.

For better understanding of metabolic systems investigation, we provide a
brief overview of metabolic network reconstruction.

20



3.2 Metabolic network reconstruction

The main steps of metabolic reconstruction process were described by Feist
[27]. For the implementation of metabolic reconstruction process, the following
information is required:

1) substrates and products which an enzyme act on,

2) the stoichiometric coefficients for each metabolite participating in the
reaction(s) catalyzed by an enzyme,

3) type of the outlined reactions (reversible or irreversible),

4) cellular localization (e.g., cytoplasm, periplasm, etc.).

This data can be found in different types of sources. There are databases of
chemical equations. The additional information about each reaction such as
cellular localization, thermodynamics, and genetic/genomic information, is also
required. The metabolic network reconstruction process consists of four
fundamental steps (see Figure 3.1 [27]).

Data Needed End Product
Genome
Sequence m@@ Draft —0 0—‘
Similarity-based 11 vE Reconstruction —0—0—0-
Annotation  1oos: vz
Known Metabolic QonT»("‘"’ ) l
Functions

Genetic Data '-r“O o O'T - Curated .
siochemical Qe Reconstruction
iochemica "ﬁ‘{)
Data OorA OcrA l
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Physiological Data ! ‘ Genome-scale
Metabolic Model

Deletion Phenotyping

(Phenomics) @0, \
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Transcriptomics DlSCOVGry ‘experlments x

Fig. 3.1: The phases of metabolic network reconstruction process

Step 1: Automated genome-based reconstruction

The reconstruction of the metabolic network uses a bottom-up approach.
Researchers begin by compiling reactions of cellular metabolism to build a
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network through the collection of gene annotations, enzymes and pathway
information from genome (e.g., NCBI, Ensembl) and pathway (e.g., KEGG,
ExPASy) databases. The genome annotation provides unique identifiers for the
reconstruction content and a list of the metabolic enzymes and can indicate how
the gene products interact. Metabolic databases such as Kyoto Encyclopedia of
Genes and Genomes (KEGG) [28], BRENDA [29], MetaCyc [30] and Transport
DB [31] contain collections of metabolic and transport reactions. In particular,
BRENDA, ENZYME [32] and the databases of Union of Biochemistry and
Molecular Biology (IUBMB) provide stoichiometries of reactions, enzyme
properties information, substrate specificities and cofactor usage. Transport DB
is usually used to retrieve the transport functions encoded by sequenced
genomes.

The process of automated reconstruction of metabolic network provides only
the first stage of real network reconstruction. The output on this stage is a draft
metabolic network, which is represented as an initial set of candidate
biochemical reactions.

Step 2: Curating the draft reconstruction

After the first step, the draft network is not complete and fully appropriate for
further investigation. It does not provide certain organism-specific features such
as substrate or cofactor specificity and sub-cellular localization. In addition, the
draft network may have gaps and mistakenly included reactions. Manual
curation is therefore required to add and correct information, which was missed
or was not accurate after the automated reconstruction. The manual curation in
contrast with the automated reconstruction is a time-consuming process.

Researchers refine the network using literature evidences, including journal
articles, reviews and textbooks on metabolic functions, biomass composition,
growth conditions and gene-reaction associations. Expert’s opinions are also one
of the important sources of the manual curation. These sources provide
information about different properties of the network such as reaction
directionality and location. The availability of additional information for manual
curation is highly variable and depends on the type of network or an organism.
The main objective of manual curation is to fill in gaps in the draft networks by
using different sources.

A combination of automated reconstruction with literature-based manual
curation provides a high-quality network reconstruction. The result of this
process is a biochemically, genomically and genetically structured knowledge
base.

There are two global human metabolic networks: the Edinburgh Human
Metabolic Network [33] and the human Recon 1 [34]. They consist of a list of
human reactions, metabolites and gene-protein-reaction relationships.
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Step 3: Converting a network reconstruction to a computational model

The conversion of a reconstructed metabolic network to a mathematical
representation is a crucial step before the network can be used for further
investigation. The mathematical model of the network provides different
opportunities for researchers to analyze network properties.

There are two approaches are used for modeling of metabolic networks. The
constraint-based approach describes mathematically the network by a
stoichiometric matrix. The stoichiometric matrix captures the stoichiometry of
the reactions. Analysis is performed under the assumption of steady state. The
constraint-based models of metabolic networks lack the ability to directly
predict the dynamics of the system [35].

Kinetic models describe the complete dynamics of the network. Creation of
reliable kinetic models involves estimation of parameters. Complexity of this
task is increasing with size of the network. Systems of ordinary differential
equations (ODEs) are applied to model this kind of dynamical systems. ODEs
are the most refined mathematical method to describe metabolic processes. Such
detailed descriptions of the dynamics are essential to an accurate understanding
of regulatory networks but they require substantial prior knowledge about the
system [26], [36]. Introduction to kinetic modeling can be found in section 3.3
of this chapter.

The formulation of model equation system is challenging task. For many
large networks, which are available in databases like KEGG or MetaCyc, the
mechanism of reaction remains unknown. Generally, reliable rate equations for
the reactions are not known because of the fact that the each equation has to be
derived for each enzyme individually [37]. Therefore, it is common approach to
apply approximate rate laws, which characterize the most important features of
the reaction rate. Many rate laws exist which can be related to probabilistic [38],
[39], phenomenological [40], [41], or semi-mechanistic approaches [42], [43].

The creation of reliable kinetic models involves the estimation of parameters.
The models contain rate law equations for the reactions, their kinetic parameters
and initial metabolite concentrations. For selecting appropriate rate laws, the
deep understanding of enzyme mechanism is required. The dynamic ODE
formulation requires significant information, including rate constants, total
enzyme concentrations, reaction mechanisms. However, this approach provides
unique and detailed solution.

The dynamic models of metabolic networks contain certain number of model
parameters, including the reaction rates, Michaelis-Menten constants or
constants describing the influence of certain inhibitors. The parameter values of
model can often be measured. However, this process time-consuming,
expensive, and usually impractical [8].

The main source of the kinetic parameters is published literature.
Nevertheless, most of them are not available. Online databases are also one of
the possible sources providing measured parameter values. The main drawback
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of such data is differences between measured parameters, which are caused by
variations in the experimental settings. It means that most parameters defined in
experiments in vitro are different from parameters measured in vivo. Therefore,
one of the principal questions in modeling of metabolic networks is the model
parameter estimation [8].

The complexity of interactions between components of metabolic system
makes the parameter estimation of model extremely challenging. Due to a large
number of reactions, non-linear interactions between different metabolites,
enzymes and other components of the system, the parameters estimation of
metabolic systems can be formulated as non-linear programming (NLP) problem

[9].

Step 4: Reconstruction uses and integration of high-throughput data

High-throughput data sets, which evaluate a large number of interactions
across different growth or genetic conditions, can be utilized to refine and
expand the metabolic network. These types of comparisons and analyses have
the potential to truly evaluate genome-scale omics data sets in an integrated
manner by placing them in a functional and structured context. The main aim of
this step is to uncover new metabolic knowledge using systematic data from
metabolic reconstruction. There are three main directions of investigations after
the metabolic network reconstruction:

1) studies that have utilized a reconstruction to examine topological
network properties,

2) studies that have utilized a reconstruction in constraint-based modeling
for quantitative or qualitative analyses,

3) studies that are purely data driven.

3.3 Kinetic modeling

Biochemical kinetics is based on principle of mass action. It provides
instruments for description of the rate of a chemical reaction in mathematical
equations form. This principle sounds the following way: “the rate of a chemical
reaction is proportional to the product of the concentrations of the reactants
involved in the elementary chemical process™ [44].

The fundamental events in chemical reaction networks are elementary
reactions [45]. There are two types of elementary reactions:

linear xX—>

(1)

bilinear Xp + Xy ——>
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Elementary reactions are irreducible events of chemical transformations. It is
important to know that rates v and concentrations x are nonnegative variables.

x>0, v>0 (2)

Reaction rates are proportional to the collision frequency of molecules taking
part in a reaction. The probability of a collision between two different molecules
depends on the concentration of a chemical species in a three-dimensional
unconstrained domain. This dependence can be formulated as:

. . . -1
linear v=kx where the units on k are time

3)

ey . . -1 -1
bilinear v=kx;x; where the units on k are time™ conc

Enzymes increase the probability of required collision. It means there are
collisions that more likely produce a reaction at certain angles than others.
Molecules bind to the surface of an enzyme at certain angles, which increases
the probability of a reaction, see Figure 3.2 [45]. This binding process is
characterized by certain numerical values of the rate constants. The rate
constants are genetically determined as the structure of a protein for every
individual in population. Thus, there are no common values of rate constants for
whole population.

e

a b

Protein Protein

Fig. 3.2:Binding of two molecules on an enzyme

Elementary reaction mechanisms can be mathematically described by so
called rate laws.
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Reversible reactions
Thermodynamically reversible reaction is presented the following way:

v+

4

The overall rate (the net rate) of the reaction is described by the difference
between the forward and reverse reactions:

Vet =V =V =k x;—k x;, Keg=X/ =k'/ k™ (5)

where K 1s the equilibrium constant for the reaction.
Bilinear reaction can be presented as:

V+
x]+x2 ~ X3

(6)
The net rate of the reaction can be written following way:
Ve =V =V =k xix—k x3,  Keg=x3x=k/k (7)

Enzymatic reactions

There are different ways to describe enzymatic reactions. In this chapter, we
consider the most common — classical irreversible Michaelis-Menten
mechanism, which consists of three elementary reactions:

v, =k, [S][E] v,=ky[X]
S+E —~ X — P+E

~

v =k ,[X] (8)

where S is a substrate, E and P are an enzyme and product, respectively. A
complex X is a result of binding S to E, the intermediate.

Under a quasi-steady-state assumption (QSSA) — d[X]/dt=0, the classical rate
law of Michaelis-Menten mechanism can be written as:

,_dIS]_ =V,[S]

9
dt K, +[S] ©)

where parameter V, is the maximal reaction rate and K.,=(k_;+k,)/k; is the
Michaelis-Menten constant [45].
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The general expression for reversible Michaelis-Menten reaction can be
presented as:

| _V/ISIK, -VIPV/K,
1+[S1/ K, +[P1/K,,

(10)

where V; and V, are the rates of forward and reverse reaction, respectively
[46].

In special cases, researchers use other rate laws. For example:
Inhibition rate laws
For instance, Irreversible Competitive Inhibition:

(11)

92}

\
%)

| M—

[

s eq
where [S] 1s substrate concentration, [P] 1s product concentration, V; 1is the
rate of forward reaction, K., is equilibrium constant, K, is rate constant for
substrate, K, 1s rate constant for product.

Two Substrate Rate Laws
For instance, Random Order Bi-Bi Rate Law:

7]
LSS, s
A

K, K, K

eq
V= (12)

(1+[Sl]+[Pz]) 1+[52]+[P1])

K5, Kp, Ky, Kp

where [$;] 1s substrate concentration, [P;] 1s product concentration, V; is the
rate of forward reaction, K., 1s equilibrium constant, K; is rate constant for
substrate, K, is rate constant for product [46].

In theoretical part, we provide only examples of common rate laws. In fact,

there are many of them that can be used in kinetic modeling. However, the
classical one is the Michaelis-Menten mechanism.
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Overall, kinetic modeling of metabolic processes is based on rate laws.
Therefore, system of ODEs, which describes the system dynamics, consists of
nonlinear differential equations with high number of unknown parameters such
as reaction rates and rate constants.
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4 EVOLUTIONARY ALGORITHMS

Evolutionary algorithms were inspired by Darwin’s theory of evolution and
Mendel’s genetic laws. The main principles and ideas of evolutionary
computation were based on works A.M. Turing [47] and N.A. Barricelli [48].

Simulating process of natural evolution on a computer results in stochastic
optimization techniques that can often outperform classical methods of
optimization when applied to difficult real-world problems [49], [50].

All the evolutionary techniques are based on the same idea: given a
population of individuals, the environmental pressure causes natural selection,
which causes a rise in the fitness of the population. At the beginning, a set of
candidate solutions is randomly created. The aim is to maximize a quality
function. In other words, the quality function is applied as an abstract fitness
measure — the higher the better. The choice of the better candidates 1s based on
this fitness. Then, the chosen candidates (the parents) seed the next generation
(the offspring) by applying recombination and/ or mutation to them.
Recombination can be applied to two or more candidates whereas mutation can
be applied to one. The new generation competes with the “old” candidates based
on their fitness [51], [52].

The general scheme of an evolutionary algorithm is given in Figure 4.1.

Parent selection
Initialization Parents

Recombination

Population

Mutation

Termination

Offspring

Survivor selection

Fig. 4.1: A general scheme of an evolutionary algorithm as a flow-chart

EAs have a number of components and procedures that must be specified.
The main components are following:

*  Representation is definition of individuals, which means the formulation
of the problem into terms used in evolutionary computation.
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«  Evaluation function (fitness function) forms the basis for selection, and
thereby it facilitates improvements. The fitness function represents the
requirements to adapt to.

*  Population forms the unit of evolution. Defining a population means
specifying how many individuals are in it. In some algorithms, it also means
specifying a distance measure or a neighborhood relation.

*  Parent selection mechanism role is to distinguish among individuals
based on their quality to allow the better individuals to become parents of the
next generation.

*  Variation operators, which include mutation and recombination
(crossover), create new individuals from old ones.

*  Survivor selection mechanism (replacement) distinguishes among
individuals based on their quality. It is similar to parent selection but in a
different stage of the evolutionary cycle [51].

The main procedures are the initialization and the termination, which must be
also defined. Initialization is kept simple in most EA applications: the first
population is seeded by randomly generated individuals. Termination procedure
is represented by termination conditions. Commonly used termination
conditions are the following [51]:

1) The maximally allowed CPU time elapses.

2) The total number of fitness evaluations reaches a given limit.

3) For a given period of time or a number of generations or fitness
evaluations, the fitness improvement remains under a threshold value.

4)  The population diversity drops under a given threshold.

A number of evolutionary algorithms were developed in recent decades:
genetic algorithm (GA) [53] and its different versions, evolutionary
programming (EP) [52], evolution strategies (ES) [54], differential evolution
(DE) [55]. Other evolutionary algorithms include memetic algorithms [56], [57],
scatter search [54], self-organizing migrating algorithm (SOMA) [58], and tabu
search [59], [60]. For our investigation, we have chosen differential evolution
and self-organizing migrating algorithm. Thus, the following sections are
devoted to only these algorithms.

4.1 Genetic Algorithms

Genetic algorithms were introduced by John Holland in the 1970s, inspired by
Darwin’s theory of evolution [61].

Firstly, “initialization” procedure generates an initial population. Then the
initial population evolves into offspring until the termination conditions are
fulfilled. For evolving, three evolutionary operations — selection, crossover, and
mutation — are executed in sequence.

The selection operator distinguishes among individuals based on their quality
(fitness values) and produces a temporary population. There are three the most
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common schemes of selection: roulette-wheel, ranking and tournament
selection.

The crossover operator mates individuals in the mating pool by pairs and
generates children by crossing over the mated pairs with certain probability, one
of the control parameters of genetic algorithms. Among many existing crossover
schemes, there are four the most common: one-point crossover, multi-point
crossover, binomial crossover and exponential crossover.

The mutation operator uses only one parent and creates one child by applying
some kind of randomized change. The following mutation schemes are the most
common: creep mutation, swap mutation, insert mutation, scramble and
inversion mutation.

There are some features of GA that differ it from other techniques:

*  GA searches many peaks in parallel, and hence reducing the possibility
of local minimum trapping.

* GA works with a coding of parameters instead of the parameters
themselves.

*  GA evaluates the fitness of each string to guide its search instead of the
optimization function.

*  GA explores the search space where the probability of finding improved
performance 1s high.

4.2 Differential Evolution

DE is a floating-point encoded evolutionary algorithm for global optimization
introduced by Storn and Price [62].

Similarly to other evolutionary algorithms, the initial population is randomly
selected. New population members are generated using recombination and
mutation. One of the remarkable features of DE is the reversed order of mutation
and recombination. Another feature is that for mutation DE uses four parents
instead of two. For each individual, three other individuals from population are
selected. A mutant vector vi is generated using three randomly selected
individuals r1, 2, r3 from generation G:

vi =er3J+F(xf’;J +xf2,l.) (13)
where F is a real and constant factor € [0, 2] which controls the amplification
of the differential variation (x},+x5,).

In order to increase the diversity of the perturbed parameter vectors, crossover
is performed on the next stage. The crossover operator uses the trial vector ui.

The trial vector is generated by using the crossover constant CR& [0,1] which

has to be determined by user. There two schemes of crossover: binomial and
exponential [62].
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The performance of DE depends on the choice of the mutation and crossover
strategies and control parameters.

There are ten different strategies of DE with DE/x/y/z notation. According to
this notation, x specifies the vector to be mutated which can be “rand” (a
randomly chosen population vector) or “best” (the vector of lowest cost from the
current population), y is the number of difference vectors used, and z is the
crossover scheme. The strategies differ form each other by the vector v [63].

Table 4.1 DE strategies

Strategy Formulation
DE/best/1/exp v=xg,  +F- (xg,, - xg,,)
DE/rand/1/exp V=1x; +F'(xrcz,, _erS,j)
DE/rand-to-best/1/exp v=xl+A (xfm, i ij) +F- (X,Gl, i~ Xer,,-)
DE/best/2/exp v=ux,, +F- (xﬁ,, + X0 =X - Xﬁ,;)
DE/rand/2/exp V=uxg, +F'(Xﬁ,,» + X=X _xr(zt,j)
DE/best/1/bin v, +F- (x5, -15)
DE/rand/1/bin v=x§, +F (x5, -x5))
DE/rand-to-best/1/bin vexl+ A (28, a0 )4 Fe(x5,-25)
DE/best/2/bin vexl, +F(x5, x5, x5, -x5)
DE/rand/2/bin vexl 4 F (x5, 425 -x5 ~x% )

The main advantages of DE are finding true global minimum regardless of the
initial parameter values, fast convergence and using few control parameters [62].

4.3 Self Organizing Migrating Algorithm

SOMA is a new optimization technique [58]. This algorithm differs from
other evolutionary algorithms. The evolutionary computation techniques are
generally based on the principle of natural evolution and genetics whereas the
main idea of SOMA is the cooperative-competitive behavior of individuals. The
notable feature of SOMA is that there is no producing offspring by parents. In
this case, the social group of individuals searches for the best solution of
problem. To achieve their aim, the intelligent individuals migrate in the search
space.

Similarly to other evolutionary techniques, the population is generated
randomly. Instead of evolution cycle (generation), the term “migration loop” is
used. In each migration loop, the population is evaluated. The best individual,
called leader L, 1s chosen based on the value of cost function. Other individuals
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choose their direction based on the position of leader. The individuals move
according to

r =1, + mtPRTvector (14)

where is a new candidate solution, is original individual, m is the difference
between leader and start position of individual, t €[0, PathLength], PRTvector

is control vector for perturbation. PathLength is control parameter defining how
far an individual stops behind the leader.

The mutation operator is presented in SOMA as the PRT vector. The
crossover operator can be thought as the movement of an individual, which is
described by Equation 2.

There are several strategies of SOMA (AllToOne, AllToAll, AllToOne Rand,
AllToAllAdaptive, Clusters), which differ by the way how individuals interact
with each other [58].
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S CASE STUDY 1. METABOLIC MODELING OF
THE UREA CYCLE

In this research, the urea cycle model was chosen for parameter optimization
using evolutionary algorithms. Three modern efficient evolutionary techniques
were applied to an optimization task, which is described below.

5.1 The urea cycle model

It is known that inborn errors of the enzymes of the urea cycle can change the
concentrations of the metabolic intermediates. Moreover, slowing of metabolic
reactions of the urea cycle can lead to serious effects on the patients condition
due to increase of free ammonia. Nausea, vomiting, loss of consciousness,
convulsions, and even more ultimately death are possible consequences of the
high ammonia concentrations in the body.

The model of urea cycle was developed by [44] to investigate dependence of
metabolite concentrations on various kinetic parameters of the enzymes. The
model includes four enzyme reaction schemes: arginase, ornithine carbomoyl
transferase, argininosuccinate lyase, and argininosuccinate synthetase (see
Figure 5.1 [44]).

Mitochondrial matrix

HCO; + NH,* + 2ATP

ornithine carbamoy! transferase

Pi
Ornithine >
Urea Citrulline ATP
arginase arginino-
H,O succinate Aspartate
.. synthetase
Argmme arginino-
succinate AMP + PPi

lvase , Argininosuccinate
Fumarate

Fig. 5.1: The urea cycle in the mammalian hepatocyte
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There were defined the rate equations for the four main enzymes, co-
substrates and products. The original model consists of 12 differential equations
and set of known values of the unitary rate constants and the steady-state
parameters. For detailed description of the urea cycle model, see Appendix A.

The rate equations for the four main enzymes are represented in the system as
Voo (Ornithine carbomoyl transferase), v, (argininosuccinate synthetase), v
(argininosuccinate lyase), v, (arginase). In the model, v, (ATP), v,, (PP1), v,
(Fumarate), v, (CP), v, (AMP), v,,, (Aspartate), v, (P1) stand for the rate
equations for the co-substrates and products of peripheral reactions (see Figure
5.1). The unitary rate constants and the steady-state parameters V,, and K,
(parameters of a Michaelis-Menten reaction) were used for defining of the rate
equations.

Overall, the number of kinetic parameters was 45. Due to the large number of
unknown parameters, the parameter estimation of this problem is related to NLP
problem.

5.2 Cost function

Generally, parameter estimation of nonlinear systems is formulated as a task
of minimization of cost function. The cost function in our research was stated as
the sum of differences between experimentally measured and simulated data.

o= E‘ypred yexp ‘ (15)

In our case, the experlmentally measured data were replaced by simulated
data using the nominal values of the model parameters obtained from [44], see
Appendix A. Initial concentration of the studied metabolites: ornithine,
citrulline, arginine and urea, were taken from the same source as the nominal
values of the parameters.

5.3. Used algorithms and their settings

Three variants of optimization algorithms, called Genetic Algorithm,
Differential Evolution, Self Organizing Migrating Algorithm have been used in
the experiments.

To find the model parameters that give the best fit to experimental data using
GA, we varied population size and mutation factor.

For the DE approach, the impact of population size on the algorithm
performance was firstly studied. Then, we investigated the influence of factor F,
which controls the amplification of the differential variation. The above-
mentioned settings with the minimum cost function value were used for
1dentification the best value of CR, the crossover constant. The details of the
experiments are described in the section Results.

In SOMA experiments, we varied only population size (PopSize) due to time-
consuming calculations.
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The minimum of cost function value was used as a quality measure of every
set of algorithm settings.

The experiments were conducted using Mathematica 7. Each experiment was
repeated 40 times. We have used the DERandIBin version of DE and the
AllToOne version of SOMA. All calculations were done using grid computer
that includes 16 XServers, each 2x2 GHz Intel Xeon, 1 GB RAM, 80 GB HD
1.e. 64 CPUs.

5.4. Results

Two of applied optimization techniques yielded meaningful results. DE and
SOMA algorithms were capable of precise parameter estimation of the urea
cycle model. In contrast, GA predicted correctly behavior of only three from
four metabolites.

As a result of search of parameters that give the best fit to experimental data,
the comparison of algorithms performance was carried out. Performance of GA,
DE and SOMA is presented in Figure 5.2.

0.0010
0.0008¢
0.0006¢}
Cost Value
0.0004}
0.0002¢
GA DE SOMA
Algorithm

Fig. 5.2: Comparison of the optimization algorithms applied to the urea cycle
model

The minimal cost function value 3.24x10* GA reaches for population size
900. DE gives the best result with F=0.8, CR=0.6 and population size 900. The
minimum of cost function value with these settings is 2.13x10™. In contrast to
DE, SOMA reaches the best cost function of 5.61x10” with PopSize=135.
However, in order to compare the performance of these three algorithms, we
also take into account number of cost function evaluations. Hence, there have
been chosen the results of SOMA simulations with PopSize=90. In this case, the
cost function value is 8.43x10”, which is slightly higher than for PopSize=135
but still lower in comparison with the best DE and GA results. The implemented
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experimental setting in the above mentioned simulations are presented in Table
5.1.

Table 5.1 Settings for the algorithms applied to the urea cycle model

GA settings DE settings SOMA settings
PopSize 900 | NP 900 | PathLength 3
MutationConstant | 0.2 F 0.8 Step 0.11
Generations 150 |CR 0.6 |PRT 0.1
Generations 150 | PopSize 90
Migrations 50
MinDiv -0.1

5.4.1 GA experiments

To find the model parameters that give the best fit to experimental data using
GA, firstly, mutation constant was varied. Then, the most successful value was
applied to experiments with varying population size. The minimum of cost
function value is used as a quality measure of every set of algorithm settings.

Figure 5.3 shows the impact of mutation constant on cost function value. The
mutation constant was varied at value of 0.2, 0.5 and 0.8. We limited our
experiments to these values because of the fact that calculations of such complex
systems are time consuming. GA yielded the best result with cost function value
3.96x10™ with mutation constant 0.2. For comparison, for mutation constant 0.5
cost func3tion value was 6.45x10™ and for 0.8 cost function value reached only
1.26x10™.
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Fig. 5.3: The influence of mutation constant on the cost function value for GA
Despite the fact that the result of calculations was already acceptable, we

continued to study GA performance by varying population size. We chose 3 sets
of population size 90, 450 and 900, which is equal to 2D, 10D and 20D, where
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D is a number of cost function arguments. In the urea cycle model, it is 45. The
result can be found in Figure 5.4.
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Fig. 5.4: The impact of population size on the cost function value for GA

The best result with minimal cost function value 3.24x10™* reached GA with
population size of 900. As can be seen from Figure 5.4, increasing population

size 10 times has not given significant improvement in minimizing cost function
value.
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Fig. 5.5: The time courses of (1) ornithine, (2) citrulline, (3) arginine and (4)
urea where predicted behavior by GA is dashed and original is solid
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In Figure 5.5, the time courses of four main metabolites are presented with
original behavior and predicted by GA. We can see that the behavior of three
metabolites: ornithine, citrulline and urea, are predicted relatively well.
However, the dynamics of arginine was not correctly estimated.

This i1s exactly case study where we can find not accurate the system
dynamics prediction with relatively low cost function value.

5.4.2 DE experiments

To find the model parameters using DE algorithm, we vary population size,
the F value and CR. The minimum of cost function value is used as a quality
measure of every set of algorithm settings.

Figure 4.1 depicts dependence of cost function value on various population
sizes. To investigate the impact of population size, we apply a population size of
90, 450 and 900. These settings are equal to 2D, 10D and 20D, where D is a
number of cost function arguments. In our case, it is 45.

We limit the investigation to only 3 sets of population size because of the
execution time, which depends on the dimension of the problem.

0.0009;
0.0008}

0.0007}
Cost Value g 0006!

00005 —
00004 1T —

0.0003}

90 450 900
Polulation Size

Fig. 5.6: The impact of population size on the cost function value for DE

The boxplots show that a population size of 900 reaches the best minimum
result. The average cost function value decreases with increasing population
size. However, all results give very low cost function value.

We continue to study the DE performance by varying the values for F (see
Figure 5.7) and CR (see Figure 5.8). The influence of the F is tested using three
F values: 0.1, 0.5 and 0.8. The CR value is set on 0.5. The DE algorithms yields
the best results for F=0.8. Therefore, the best settings F=0.8 and population size
0f 900 are used for the next investigation.

To find the most successful combination of the algorithm settings, we vary
CR from 0.1 to 0.9. Similarly to the above-mentioned experiments, each
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calculation is repeated 40 times. Figure 5.8 depicts that CR=0.6 yields the best
minimum result. It should be noticed that DE with all values of CR reaches
meaningful results with the cost function value from 2.13x10™ to 9.48x10™*.
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Fig. 5.7: The influence of mutation constant F on the cost function value for DE
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Fig. 5.8: The influence of crossover constant CR on the cost function value for
DE

Figure 5.9 shows simulation of the system dynamics using predicted
parameters (dashed) together with original parameters (solid). There are time
courses of 4 main metabolites concentrations in the urea cycle simulation:
ornithine, citrulline, arginine and urea. The figure depicts the best result of DE
algorithm with F=0.8, CR=0.6 and population size 900.

The DE algorithm performs very well. It is obvious that parameters of the
model are predicted precisely, see Figure 5.9.
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Fig. 5.9: The time courses of (1) ornithine, (2) citrulline, (3) arginine and (4)
urea where predicted behavior by DE is dashed and original is solid

5.4.3 SOMA experiments

To define the best model parameters using SOMA algorithm, the population
size (PopSize) was varied. The minimum of cost function value was used as a
quality measure of every set of algorithm settings.

Similarly to DE, the study was limited to 3 sets of settings with population
size of 45, 90 and 135, which equal 1D, 2D and 3D. The choice of population
sizes for SOMA algorithm was based on recommendations in [63]. The number
of repetitions is again 40. The results of the experiments are shown in Figure
5.10.

The boxplots show that varying PopSize has similar impact on estimation
process as in case of DE - the higher population size, the lower cost function
value. SOMA yields the minimum of cost function value 5.61x10” with
PopSize=135. The worst result of SOMA algorithm is 2.77x10 which is
slightly higher than the best result of DE algorithm 2.13x10™,
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Fig. 5.10: The impact of population size (PopSize) on the cost function value for
SOMA

Figure 5.11 depicts the time courses of 4 urea cycle metabolites with
predicted and original parameters. The behavior of the system is predicted
precisely. The estimated parameters values can be found in Appendix A.
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Fig. 5.11: The time courses of (1) ornithine, (2) citrulline, (3) arginine and (4)
urea where predicted behavior by SOMA is dashed and original is
solid
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5.5 Conclusions for the urea cycle experiments

Two of applied optimization techniques yielded meaningful results. DE and
SOMA algorithms were capable of precise parameter estimation of the urea
cycle model. In contrast, GA predicted correctly behavior of only three from
four metabolites.

Interestingly, increasing population size in GA case has not given significant
improvement in minimizing cost function value. Varying algorithms settings
could improve the DE and SOMA algorithms performance. In both cases DE
and SOMA, increasing population size gave significantly better results. On the
other hand, it required large computational effort. Considering computational
time, the most time-consuming calculations were observed in SOMA
simulations. However, it should be noted that SOMA provided the best
performance in estimating parameters.

Taking into account that DE and SOMA algorithms performed better in
comparison with GA, and the fastest was DE, it is reasonable to apply DE in
experiments with limited computational time.

The urea cycle experiment shows that in case where GA relatively failed,
other evolutionary techniques such as DE and SOMA definitely succeeded.
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6 CASE STUDY 2. METABOLIC MODELING OF A
THREE-STEP PATHWAY

In present case study, a well-studied biochemical system, called a three-step
pathway is considered. Three evolutionary techniques were applied to estimate
parameters of the model.

6.1 A three-step pathway model

A three-step pathway is a common biological model with known parameter
values (see Figure 6.1 [23]) being considered as a benchmark for in silico
experiments.

> M2 ¢— > P

S <« » M1
Fig. 6.1: The three-step pathway model where solid arrows are mass flows,
dashed-kinetic regulation, S is the pathway substrate, P is the pathway
product. M1, M2 and M3 are intermediate metabolites, El, E2 and E3
are the enzymes; G1, G2 and G3 are the mRNA species for the
enzymes

This model was originally investigated using stochastic methods by Mendes
[64]. Moles [23] extended this study to 16 experiments with different initial data
of S (substrate) and P (product). The author additionally used initial vector for
36 estimated parameters. The best performing algorithm was Evolution Strategy
using Stochastic Ranking (SRES). In that study, author reported that DE failed
in solving this problem. The cost function value for DE was 151.779 whereas
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for the best performing algorithm SRES cost function value was 0.0013. For
additional information, see [23].

In our study, we have considered the same system of differential equations,
which can be found in Appendix B. Upper, and lower bounds for kinetic
parameters are 10"'> and 10°, respectively. The exception is the Hill coefficients
(ni, na) where the range is (0.1, 10). Values of P and S are 0.05 and 0.1,
respectively.

6.2 Cost function

Parameter estimation of nonlinear systems, in our case it is 36-dimention
system, commonly can be formulated as task of minimization of cost function.
In present study, the cost function was formulated as the sum of absolute
differences between data with predicted by algorithms parameters and data with
nominal parameters. Predictions for time courses were conducted every second
with final time of 120 seconds.

6.3 Used algorithms and their settings

The DERand1Bin version of DE, two versions of SOMA (AllToOne and
AllToOne Rand) and GA were applied in the present case study. Each
experiment was run 35 times. All calculations were performed using grid
computer that includes 16 XServers, each 2x2 GHz Intel Xeon, 1 GB RAM, 80
GB HD i.e. 64 CPUs.

DE was applied to define the model parameters. The result was compared
with the existed study. We used the same control parameters for DE as in
Moles’s study. It is mean that population size was 450, and number of
generation was 5000. We also extended study by varying population size,
mutation constant F, crossover constant CR and upper bound.

For SOMA experiments, we varied number of migrations, population size
(PopSize) and upper bound.

In GA case, we studied only influence of population size. For comparison
with other algorithms, we used the same number of cost function evaluations.

The minimum of cost function value has been used as a quality measure of
every set of algorithm settings.

6.4 Results

We have considered three evolutionary techniques: DE, two versions of
SOMA and GA. The predicted dynamics for each algorithm are presented in the
following sections. Comparison of the algorithms performance is presented in
Figure 6.2. The efficiency of particular method was judged based on cost
function value. As have been mentioned above, the problem consisted of 36
kinetic parameters.
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Fig. 6.2: Comparison of the algorithms performance applied to a three-step
pathway

DE predicted the behavior of the studied system with cost function value
23.816 for population size of 450. Varying population size has not improved DE
performance. The most successful combination of mutation and crossover
constants were F=0.2, CR=0.2. However, it also did not give significant
decrease of cost function value. Only varying of upper bounds gave valuable
impact on cost function value.

In case of SOMA experiments, our results show that AllToOne version was
able to define dynamics of the system with cost function value 22.557, which is
better in comparison with AllToOne Rand version (22.903). The further
investigation regarding upper bounds gave the minimal cost function value for
10'-upper bound was 6.291. And time courses of the systems species were
predicted correctly.

GA defined the system parameters with minimal cost function 161.894 for
population size of 450. Taking into account time-consuming calculations,
population size as control parameter was varied only. Increasing population size
to 1000 improved minimal cost function value to 113.685.

Table 6.1 Settings for the algorithms applied a three-step pathway model

GA settings DE settings SOMA settings
PopSize 450 | NP 450 | PathLength 3
MutationConstant | 0.5 F 0.2 Step 0.11
Generations 5000 | CR 0.2 PRT 0.1
Generations 5000 | PopSize 150
Migrations 200
MinDiv -0.1
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6.4.1 DE experiments

To define the model parameters using DE, both mutation constant F and
crossover constant CR were varied to minimize the cost function. These settings
were applied for experiments with population size of 450 and 1000. The
obtained results are presented in Figure 6.3 for mutation constant F and in
Figure 6.4 for crossover constant CR.
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Fig. 6.3: The impact of constant F on cost function value for DE
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Fig. 6.4: The impact of constant CR on cost function value for DE
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The boxplots show that combination F=0.2 and CR=0.2 are the most
successful settings with minimal, in given experiments, cost function value.
Speaking about population size, increasing it from 450 to 1000 did not give
significant improvement in minimizing of cost function value. The best minimal
cost function value of DE for population size of 450 was 23.816 and for
population size of 1000 was 23.716. Taking into account that in paper [23] cost
function was calculated every 6 seconds and in our case every second, cost
function value in our DE experiments is much lower with the same number of
cost function evaluations. For further experiments we used the above-mentioned
constants F and CR with population size of 450.

Figure 6.5 shows simulation of the system dynamics using predicted
parameters (dashed) and nominal parameters (solid). We provide an example of
successfully predicted metabolite behavior (M2) and not accurately predicted
behavior (G2).
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Fig. 6.5: The time courses of M2 and G2 species of the system where predicted
behavior by DE is dashed and original is solid (10°-upper bound)

DE with relatively high number of cost function evaluations was able to only
partially predict behavior of systems elements, which agrees with the results
from [23]. Presumably, the main reason is extremely wide range of lower and
upper bounds for systems parameters.

During calculations with different algorithms settings, we noticed that range
of cost function values in case of initial (randomly generated) population was
very narrow. Then, we varied upper bound to see how the range of initial and
final population changed, see Figure 6.6 and Figure 6.7.

49



14 000} T
12000;
10000}
8000}
6000}
4000

2000}

o0 —— L L |

10! 10? 10° 10°
Upper bound

Cost Value
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Fig. 6.7: Range of cost function values for final population of DE

The minimal and maximal cost function values for initial population, in case
of 10°-upper bound, are unusually near to each other. The cases 10° and 10>
upper bounds are similar. On the other hand, for 10'-upper bound, we can see
wide range of cost function values, which is typical for random generating of
initial population. Figure 6.7 depicts that cost function value of final population
presumably decreases with decreasing of upper bound.

The minimal cost function value for 10'-upper bound was 8.406. For this
case, the behavior of the system with predicted and nominal parameters are
presented in Figure 6.8.
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Fig. 6.8: The time courses of M2 and G2 species of the system where predicted
behavior by DE is dashed and original is solid (10'-upper bound)

In the Figure 6.8 we can see the improvement in prediction of time courses
for M2 and G2 species. Other species were also predicted correctly.

6.4.2 SOMA experiments

Two versions of SOMA, called AllToOne (SOMAATO) and AllToOne Rand
(SOMAATR), were applied to a three-step pathway with different algorithm
settings for upper bound 10°. Population size (PopSize) and number of
migrations were varied for both versions. Obtained results are presented in

Figure 6.9 and Figure 6.10.
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Fig. 6.10: The impact of population size (PopSize) on the cost function value for
SOMA

The best minimal cost function value 22.557 was obtained in case of
SOMAATO for migrations number of 200, which is slightly better in
comparison with SOMAATR and DE experiments. Then, using migrations
number of 200, we investigated the impact of population size, again for both
versions. Figure 6.10 shows that in case of SOMAATO population size did not
have significant impact on the cost function value. For SOMAATR, it slightly
improved the result with cost function value 22.903. Therefore, SOMAATO
reached better results in comparison with SOMAATR. For upper bound 10°,
SOMAATO was able to predict dynamics of only 4 from 8 studied elements of
the system. Two of them are presented in the Figure 6.11.
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Fig. 6.11: The time courses of M2 and G2 species of the system where predicted
behavior by SOMA is dashed and original is solid (10°-upper bound)
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Similarly to DE experiments, we varied upper bound for SOMAATO, see
Figure 6.12 and Figure 6.13. In case of 10°-upper bound, the range of cost
function values for initial population was also narrow. For 10'-upper bound,
there is a wide range of cost function values for initial population. In case of
final population, again, we can see decreasing of cost function value for 10', 10
and 10’-upper bounds.

The minimal cost function value for 10'-upper bound was 6.291, which is
lower in comparison with the DE results. For this case, the behavior of the
system with predicted and nominal parameters are presented in Figure 6.14.
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Fig. 6.12: Range of cost function values for initial population of SOMA
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Fig. 6.13: Range of cost function values for final population of SOMA
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Fig. 6.14: The time courses of M2 and G2 species of the system where predicted
behavior by SOMA is dashed and original is solid (10'-upper bound)

6.4.3 GA experiments

In case GA algorithm, only one control parameter was varied, population size.
Mutation constant was set to 0.5. Initial results gave us clear understanding that
GA was much less accurate in defining model parameters compared to DE and
two versions of SOMA. The minimal cost function value for population size of
450 was 161.894. With the same number of cost function evaluations, DE best
result was 23.816. Increasing population size for GA, the result was improved to
113.685 (see Figure 6.15).
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Fig. 6.15: The impact of population size on the cost function value for GA
Taking into account the fact that GA performance was significantly worse in

comparison with other algorithms, we decided not to continue investigation with
GA algorithm 1n this case study.
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6.5 Conclusions for Case study 2

For parameter estimation of a three-step pathway, we have considered three
evolutionary techniques: DE, SOMA and GA.

DE with relatively high number of cost function evaluations was able to only
partially predict behavior of the systems species. Decreasing of upper bound to
10" gave significant improvement in parameter estimation. DE predicted the
behavior of the studied system with cost function value 23.816 for population
size of 450, which is better result in comparison with DE result in paper [23].

In case of SOMA experiments with two versions AllToOne and AllToOne
Rand, our results showed that the AllToOne version was able to define
dynamics of the system with minimal cost function value 22.557, which is better
than AllToOne Rand and DE results but still are not enough good as SRES from
[23]. The minimal cost function value for 10'-upper bound was 6.291. And time
courses of the systems species were predicted correctly.

From our point of view, the main reason that our results and the results from
paper [23] are different is the fact that the authors used artificially an initial
vector for initial population whereas our experiments included only randomly
generated initial population.

In addition to our experiments, not accurate prediction of the system
dynamics in case upper bound 10° could be because of extremely wide range of
lower and upper bounds for systems parameters. The algorithms were not able to
define parameters in such enormous search space in reasonable time. The second
possible reason could be high non-linearity of the system.
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7 CASE STUDY 3. METABOLIC MODELING OF
GLYCOGENOLYSIS IN SKELETAL MUSCLE

To define parameters of large-scale metabolic model using evolutionary
techniques, we have chosen a dynamic model of the glycogenolytic pathway to
lactate in skeletal muscle.

7.1 A model for glycogenolysis in skeletal muscle

This model was developed by Melissa J. Lambeth and Martin J. Kushmerick
[64] to understand the role of glycogenolysis and glycolytic fluxes in muscle
energy metabolism. This model fully describes energy metabolism of skeletal
muscle.

The model consists of the rate equations for 12 biochemical reactions from
glycogen to lactate. The system is represented by the system of differential
equations based on Michaelis-Menten kinetics. The system of ODEs is
presented in Appendix C. Metabolite concentrations (initial conditions) and
kinetic parameters for each enzyme were taken from the original paper [65].

Overall number of kinetic parameters was 90. It means that this problem can
be related to NLP problem.

7.2 Cost function

Similarly to previous two case studies, the cost function was formulated as the
sum of absolute differences between data with predicted by algorithms
parameters and data with nominal parameters. Predictions for time courses were
conducted every second with final time of 100 seconds.

7.3 Used algorithms and their settings

For this case study, we applied three evolutionary techniques: the
DERand1Bin version of DE, SOMA AllToOne version and GA. Each
experiment was run 35 times. All calculations were performed using the same
grid computer.

For DE experiments, mutation constant F, crossover constant Cr and
population size were varied. In SOMA case, only population size was varied
because of time-consuming calculations. For GA experiments, mutation constant
and population size were changed.

The minimum of cost function value was used as a quality measure of every
set of algorithm settings.

7.4 Results

Three evolutionary techniques: DE, SOMA and GA have been considered in
this case study. DE and SOMA yielded meaningful results in parameter
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estimation. GA was not capable of accurate prediction of the system dynamics.
The predicted dynamics can be found in the following sections devoted to
particular algorithm.

As a result of search of parameters that give the best fit to experimental data,
the comparison of algorithms performance was carried out. The minimum of
cost function value is used as a quality measure of every set of algorithm
settings. Taking into account number of cost function evaluations, the
population size 270 is comparable with DE population size 1800.

Comparison of the algorithms performance is presented in Figure 7.1.
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Fig. 7.1: Comparison of the optimization algorithms applied to the
glycogenolysis model

SOMA reaches the best result with minimal cost function value 25.624. DE
gives the minimal cost function value 71.426 with population size of 1800. In
comparison with DE and SOMA, GA performed worse with the best minimal
cost function value 125.861 for population size of 1800.

The best implemented algorithms settings are presented in Table 7.1.

Table 7.1 Settings for the algorithms applied to the glycogenolysis model in
skeletal muscle

GA settings DE settings SOMA settings
PopSize 1800 | NP 1800 | PathLength 3
MutationConstant | 0.5 F 0.2 Step 0.11
Generations 200 | CR 0.2 PRT 0.1
Generations 200 | PopSize 270
Migrations 50
MinDiv -0.1
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7.4.1 DE experiments

To define the model parameters that give the best fit to experimental data
using DE, we varied different control parameters of the algorithm. Firstly, we
set CR (crossover constant) to value of 0.2 and varied F (mutation constant) at
points 0.2, 0.5 and 0.8. The initial choice of CR value was made due to the fact
that in previous experiments the most successful value for crossover constant
was 0.2. The population size was 180, which is equal to 2D where D=90
(number of the system parameters). The result can be seen in Figure 7.2.
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Fig. 7.2: The influence of mutation constant F' on DE performance
Figure 7.3 depicts that the most successful value of F is 0.2 with cost function

value 95.146. Then, to check if varying constant CR could improve the result,
we apply DE with the following values of CR: 0.2, 0.5 and 0.8.
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Fig. 7.3: The influence of crossover constant CR on DE performance
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The boxplots show that the most successful combination of control
parameters for DE in this case F=0.2, CR=0.2.

We continue to search for the best DE settings by applying population size of
180, 900 and 1800. These settings are equal to 2D, 10D and 20D, where D is a
number of cost function arguments. In our case, it is 90.

Similar to the previous experiments, we limit the investigation to only 3 sets
of population size because of the execution time, which depends on the
dimension of the problem. In this case, the system includes 90 parameters that
characterize the system as large-scale.
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Fig. 7.4: The impact of population size on the cost function value for DE

The boxplots show that cost function value significantly decreases with
increasing population size. DE reached the best minimal cost function value
71.426 with population size of 1800. As have been mentioned above, the
experiment was limited to 3 sets of population size. Presumably, this result
could be improved by increasing cost function evaluations. However, on this
stage of our investigation, this result is acceptable taking into account that the
problem is extremely complex with high number of the system parameters.

Time courses of main metabolites in glycogenolysis of skeletal muscle can be
seen in the following figures. It should be noted that DE was able to predict the
time courses relatively precisely.
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Fig. 7.5: The time courses of glucose (GLY) and lactate (LAC) where predicted
behavior by DE is dashed and original is solid
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Fig. 7.6: The time courses of glucose 1-phosphate (GIP) and glucose 6-
phosphate (G6P) where predicted behavior by DE is dashed and
original is solid
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Fig. 7.7: The time courses of fructose 6-phosphate (F6P) and fructose 1,6-
biphosphate (FBP) where predicted behavior by DE is dashed and
original is solid
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Fig. 7.8: The time courses of NADH and NAD where predicted behavior by DE

is dashed and original is solid
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Fig. 7.9: The time courses of glycerate 3-phosphate (3PG) and glycerate 2-
phosphate (2PG) where predicted behavior by DE is dashed and
original is solid

Overall, the time courses of metabolites were predicted accurately. There are
certain differences between original and predicted time courses in case of
NADH, NAD, GAP and 3PG. However, these differences were minimal.
Moreover, the dynamics was predicted correctly.

7.4.2 SOMA experiments

To define the model parameters that give the best fit to experimental data
using SOMA, population size (PopSize) was varied. To compare SOMA results
with DE results, we applied 3 sets of PopSize 90, 180 and 270. Each experiment
was repeated 40 times. The results are presented in Figure 7.11.
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Fig. 7.10: The impact of population size (PopSize) on the cost function value for
SOMA

SOMA yields the minimum of cost function value 25.624 with PopSize=270.
However, it should be noted that the minimal cost function values for PopSizes
90 and 180 are 28.780 and 28.216, respectively. It means that SOMA reached
relatively low cost function value with less number of cost function evaluations

in comparison with DE.

The time courses of metabolites are presented in the following figures.
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Fig. 7.11: The time courses of glucose (GLY) and lactate (LAC) where
predicted behavior by SOMA is dashed and original is solid
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Fig. 7.12: The time courses of glucose 1-phosphate (G1P) and glucose 6-
phosphate (G6P) where predicted behavior by SOMA is dashed and

original is solid
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Fig. 7.13: The time courses of fructose 6-phosphate (F6P) and fructose 1,6-
biphosphate (FBP) where predicted behavior by SOMA is dashed and

original is solid
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Fig. 7.14: The time courses of NADH and NAD where predicted behavior by
SOMA is dashed and original is solid
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Fig. 7.15: The time courses of glycerate 3-phosphate (3PG) and glycerate 2-
phosphate (2PG) where predicted behavior by SOMA is dashed and
original is solid

The dynamics of the system was predicted correctly. Similarly to DE, there
are certain differences in original and predicted time courses. However, these
differences could not be taken into account because the dynamics of metabolites
concentration was predicted accurately.

7.4.3 GA experiments

Similarly to the urea cycle case study, we firstly varied mutation constant and,
then, applied the most successful value to experiments with varying population
size. The minimum of cost function value is used as a quality measure of every
set of algorithm settings.

Mutation constant value was set to 0.2, 0.5 and 0.8. Figure 7.18 shows the
result of the experiment.
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Fig. 7.16: The influence of mutation constant on the cost function value for GA
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GA showed the best result with cost function value 201.481 for mutation
constant 0.5. The cost function values for mutation constant 0.2 and 0.8 are
420.566 and 366.570, respectively.

To improve the result, we apply different population sizes with the best
mutation constant 0.5. Three sets of population sizes were chosen, similarly to
DE experiments, 90, 900 and 1800.
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Fig. 7.17: The impact of population size on the cost function value for GA

GA yielded the best minimal cost function value 125.861 with population size
of 1800. The result for population size of 900 was 190.834.

The time courses of metabolites are depicted in the following figures.
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Fig. 7.18: The time courses of glucose (GLY) and lactate (LAC) where
predicted behavior by GA is dashed and original is solid
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Fig. 7.19: The time courses of glucose 1-phosphate (G1P) and glucose 6-
phosphate (G6P) where predicted behavior by GA is dashed and
original is solid
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Fig. 7.20: The time courses of fructose 6-phosphate (F6P) and fructose 1,6-
biphosphate (FBP) where predicted behavior by GA is dashed and

original is solid
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Fig. 7.21: The time courses of NADH and NAD where predicted behavior by GA
is dashed and original is solid
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Fig. 7.22: The time courses of glycerate 3-phosphate (3PG) and glycerate 2-
phosphate (2PG) where predicted behavior by GA is dashed and
original is solid

In GA case, the prediction of the system behavior was not accurate. The
algorithm was able to correctly simulate the dynamics LAC, 13BPG and 2PG. In
other cases, the difference between original and predicted behavior was
significant.

7.5 Conclusions for Case study 3

In case study 3, three evolutionary techniques, DE, SOMA and GA, were
applied to parameter estimation of the glycolgenolysis model.

DE and SOMA yielded meaningful results with cost function value of 71.426
and 25.624, respectively. The dynamics of the system was predicted correctly by
these two algorithms.

In contrast, GA was not capable of accurate predicting the system behavior. In
estimating of most of metabolites concentration dynamics, GA failed. To find
appropriate model parameters, GA settings were set to the same number of cost
function evaluations as in case of SOMA and DE. The minimal cost function
value for GA was 125.861.

Varying algorithms settings in all cases gave significant improvement in
minimizing cost function value.

Overall, the time courses of metabolites were predicted accurately. There are
certain differences between original and predicted time courses. However, these
differences are minimal with correctly predicted dynamics.

Moreover, from our point of view, the result of DE and SOMA
performance could be still improved by increasing cost function
evaluations. However, on this stage of our investigation, this result is acceptable
taking into account that the problem is extremely complex with high number of
the system parameters.
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8 CASE STUDY 4. METABOLIC MODELING OF
GLYCOLYSIS IN HUMAN STEM CELLS

In this case study, we apply evolutionary algorithms to modeling of energy
metabolism of human stem cells. In particular, this part of dissertation is
primarily focused on the parameter identification of the glycolysis model in
stem cells.

Specific metabolic features of stem cells are not yet well known. In this
context, clearer understanding of this process is essential for regulating of stem
cell differentiation. It may allow researchers to define key metabolites or
required concentrations of metabolites to regulate the process of differentiation
stem cell to different types of cells (e.g. neurons, cardiomyocites, etc.).

Nowadays, stem cells are used for medical therapy of leukemia, bone marrow
transplantation. It is believed that stem cell therapy may completely change the
treatment of human diseases such as cancer, Parkinson's disease, spinal cord
injuries, Amyotrophic lateral sclerosis, multiple sclerosis, and muscle damage,
etc.

This research has been carried out together with researcher Anton Salykin
from the stem cell laboratory at Department of Biology, Faculty of Medicine,
Masaryk University (Brno) and researcher Dominique Chu from School of
Computing, University of Kent (Canterbury, Kent, Great Britain).

In general, the study can be divided into following 4 parts:

1) Formulation of the system of differential equations describing kinetic
reactions of the glycolysis pathway in human stem cell.

2) Estimation of the model parameters using evolutionary techniques.

3) Simulation of the system behavior under different environmental
conditions.

4) Validation of the simulation results with experimental data.

Whole research consists of two main parts: experimental and computational
modeling. In present dissertation, we consider only the second part of the human
stem cell metabolism research, estimation of the model parameters using
evolutionary techniques.

8.1 The model of glycolysis in stem cell

The scheme of energy metabolism in human stem cell is presented in Figure
8.1, taken from [66]. The pathways can be divided into two types: catabolic and
anabolic. These pathways provide stem cell energy for homeostasis. Moreover,
energy 1s needed for cell replication. One of the main features in stem cell is that
mitochondrial infrastructure is not functioning source of energy, and energy is
produced mainly from glycolysis and the pentose phosphate pathway [66].
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Fig. 8.1:Metabolic pathways in stem cell

Based on literature, metabolic databases KEGG and BRENDA, expert’s
opinion, the model of glycolysis in human stem cell has been created using
special software CellDesigner, a modeling tool of biochemical reactions. This
tool is diagram editor for drawing required network where the network is drawn
based on the process diagram, with graphical notation system (see more in [67]).
The output is a biochemical model in Systems Biology Markup Language
(SBML) [68] format, a current standard for computer models of biological
processes.

The SBML model consists of the following components:

* Function definition (a mathematical function that may be used in the
model).
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* Unit definition (a named definition of a new unit of measurement).

* Compartment type (a type of location for chemical substances).

* Species type (a type of chemical substances such as ions, molecules
etc.).

* Compartment (a well-stirred container of a particular type and size
where SBML species may be located).

* Species (list of chemical species).

* Parameter (a quantity with a symbolic name, for example, constants in a
model).

* Initial assignment (the initial conditions of a model).

* Rule (additional mathematical expression for defining dynamics of the
model).

* Constraint (a means of detecting out-of-bounds conditions).

* Reaction (a statement describing chemical transformation).

* Event (a statement describing an instantaneous, discontinuous change in
a set of variables).

In fact, the SBML format enable include all known information about the
system: species, compartments, initial conditions, variables, parameters, rate
laws, additional constraints etc.

The model of glycolysis in stem cell is presented in Appendix D. For better
understanding and also for visual reason, we provide only the system of ODEs.

Overall, the model of glycolysis describes 17 biochemical reactions. The
system includes 21 differential equations. The number of kinetic parameters is
56.

The differential equations have been constructed automatically using
CellDesigner based on classical reversible Michaelis-Menten mechanism.

Initial conditions and measured concentration of metabolites have been
provided by the stem cell laboratory at Department of Biology, Faculty of
Medicine, Masaryk University (Brno). Biological data includes concentrations
of 12 metabolites in two hours intervals during 22 hours.

8.2 Cost function

Parameter estimation of the glycolysis model is formulated as a task of cost
function minimization. The cost function in this research is stated as the sum of
differences between experimentally measured and simulated data.

In this case, experimentally measured are the concentrations of 12 metabolites
in two hours intervals during 22 hours. Therefore, simulated data are compared
with measured every 2 hours (7200 seconds). Dynamics of the system has been
predicted with final time of 79200 seconds.
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8.3 Used algorithms and their settings

Based on the results of the previous three case studies, we have decided to
apply two the most sufficient in our research evolutionary techniques — DE and
SOMA. We also took into account the complexity of the system and related with
it time-consuming calculations.

The DERand1Bin version of DE and versions AllToOne of SOMA have been
applied in the present case study. Each experiment was run 35 times. All
calculations have been performed using grid computer that includes 16
XServers, each 2x2 GHz Intel Xeon, 1 GB RAM, 80 GB HD i.e. 64 CPUs.

The following settings have been applied:

Table 8.1 Settings for the algorithms applied to the glycolysis model in human

stem cell

DE settings SOMA settings

NP 560 | PathLength 3(5)

F 0.2 Step 0.11

CR 0.2 PRT 0.1

Generations 300 | PopSize 150 (300)
Migrations 200
MinDiv -0.1

8.4 Results

In DE experiments, the above-mentioned settings were applied. The
experiment was run three times. In all cases, the calculations failed. Application
of DE in this case requires more powerful computational hardware.

To find the system parameters, we applied SOMA with different population
sizes (PopSize): 150 and 300.

The preliminary result with PopSize 150 showed not accurate prediction of
the system behavior with minimal cost function value 4.04x10*. Doubled
PopSize gave significant improvement with cost function value 1.03x10*,

The time courses of 12 metabolites can be found in the following figures.
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Fig. 8.2: The time course of glucose outside metabolite (eqn 15) where the
predicted behavior by SOMA is dashed and experimentally measured
is dotted
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Fig. 8.3: The time course of Acetyl-CoA metabolite (eqn 17) where the

predicted behavior by SOMA is dashed and experimentally measured
is dotted
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Fig. 8.4: The time course of Lactate out metabolite (eqn 18) where the
predicted behavior by SOMA is dashed and experimentally measured
is dotted
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Fig. 8.5: The time course of NAD+ metabolite (eqn 12) where the predicted
behavior by SOMA is dashed and experimentally measured is dotted
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Fig. 8.6: The time course of NADH metabolite (eqn 11) where the predicted
behavior by SOMA is dashed and experimentally measured is dotted
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Fig. 8.7: The time course of Phosphoenolpyruvate metabolite (eqn 9) where the
predicted behavior by SOMA is dashed and experimentally measured
is dotted
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Fig. 8.8: The time course of 2-Phosphoglycerate metabolite (eqn 6) where the
predicted behavior by SOMA is dashed and experimentally measured
is dotted
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Fig. 8.9: The time course of 3-Phosphoglycerate metabolite (eqn 5) where the
predicted behavior by SOMA is dashed and experimentally measured
is dotted
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Fig. 8.10: The time course of 1, 3-Bisphosphoglycerate metabolite (eqn 4)
where the predicted behavior by SOMA is dashed and experimentally
measured is dotted
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Fig. 8.11: The time course of Glyceraldehyde br 3-phosphate (eqn 3)
metabolite where the predicted behavior by SOMA is dashed and
experimentally measured is dotted
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Fig. 8.12: The time course of Dihydroxyacetone br phosphate metabolite (eqn
2) where the predicted behavior by SOMA is dashed and

experimentally measured is dotted

Fructose 6—phosphate

Concentration (nM/mg)
14 ,
121

L o Time(s)
0 20000 40000 60000 80000

Fig. 8.13: The time course of Fructose 6-phosphate metabolite (eqn 19) where
the predicted behavior by SOMA is dashed and experimentally
measured is dotted
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Fig. 8.14: The time course of Glucose metabolite (eqn 7) where the predicted
behavior by SOMA is dashed and experimentally measured is dotted

Overall, the algorithm was able to successfully predict the dynamics of seven
from twelve metabolites. To not accurate predicted dynamics could be related
the following metabolites: Fructose 6-phosphate, 1, 3-Bisphosphoglycerate, 3-
Phosphoglycerate, 2-Phosphoglycerate and Phosphoenolpyruvate.

8.5 Conclusions for Case study 4

In this case study, SOMA was able to correctly predict time courses of seven
from twelve metabolites.

The research requires additional calculations. Possibly, number of cost
function evaluations could be increased. Taking into account the fact that we
have applied quite high number of cost function evaluations and it has required
high computational effort, the further investigation could be carried out using
more powerful computational resources.

This result could be also improved by including new experimental data. For
our calculations, we had only measured data for 12 metabolites. Overall
number of the species in the system is 21. The other way of improving results
could be update of the model. As have been mentioned above, the model has
been constructed using software CellDesigner based on literature and experts
opinion. However, specific metabolic features of stem cells are not yet well
known. Presumably, there are could be certain inaccuracies in the system of
ODE:s.
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9 CONCLUSIONS AND DISCUSSIONS

An in-depth understanding of complex biological systems plays a key role in
modern bioscience. Among many studied topics in system biology, the modeling
of metabolic networks is very compelling. The complexity of interactions
between components of metabolic system makes the prediction of the system
behavior extremely challenging. Estimation of model parameters is required for
prediction of system dynamics. One of the effective approaches in the parameter
estimation problem is application of modern optimization techniques.

In present study, performance of modern evolutionary techniques in
parameter estimation of well-studied metabolic systems and the metabolic
system with unknown properties has been investigated. Selected evolutionary
algorithms have been applied to define parameters of metabolic systems. The
performance of the algorithms was different that depended on scale of a problem
and also nonlinearity of the studied systems.

In all cases the optimization task was formulated as minimization problem.
The purpose of an algorithm is to find the model parameters that give the best fit
to experimental data.

First case study was devoted to application of three modern evolutionary
techniques, DE, SOMA and GA, to parameter estimation of the well-studied
metabolic system, the urea cycle of the mammalian hepatocyte. Two of applied
optimization techniques yielded meaningful results. DE and SOMA algorithms
provide robust and precise parameter estimation of the urea cycle model. In
contrast, GA predicted correctly behavior of only three from four metabolites.
Interestingly, increasing population size in GA case did not show any significant
improvement in minimizing cost function value. Varying algorithms settings
could improve the DE and SOMA algorithms performance. In both cases DE
and SOMA produced significantly better results when the population size was
increased but required huge computational effort. In terms of computational
time, the most time-consuming calculations were observed in SOMA
simulations. However, SOMA provided the best performance in estimating
parameters.

The urea cycle experiment shows that in case where GA relatively failed,
other evolutionary techniques such as DE and SOMA proved successful. It
should be noted that the evolutionary techniques were firstly applied on the urea
cycle model to estimate the model parameters.

In case study 2, for parameter estimation of a three-step pathway, we have
considered the same three evolutionary techniques: DE, SOMA and GA.
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DE with relatively high number of cost function evaluations was able to only
partially predict behavior of the systems species. Decreasing of upper bound to
10" gave significant improvement in parameter estimation. In case of SOMA
experiments with two versions AllToOne and AllToOne Rand, our results
showed that the AllToOne version was able to define dynamics better than
AllToOne Rand and DE results. The time courses of the systems species were
predicted correctly. GA performance was significantly worse in comparison
with other algorithms.

Not accurate prediction of the system dynamics in case upper bound 10° could
be because of extremely wide range of lower and upper bounds for systems
parameters. The algorithms were not able to define parameters in such enormous
search space in reasonable time. The second possible reason could be high non-
linearity of the system.

In case study 3, the same evolutionary algorithms were applied to parameter
estimation of the glycolgenolysis model in skeletal muscle. This was first
attempt to define parameters of such complex system using evolutionary
computation.

DE and SOMA yielded meaningful results. The dynamics of the system was
predicted correctly by these two algorithms. In contrast, GA was not capable of
accurate predicting the system behavior. In estimating of most of metabolites
concentration dynamics, GA failed. Varying algorithms settings in all cases gave
significant improvement in minimizing cost function value.

Overall, the time courses of metabolites were predicted accurately. There are
certain differences between original and predicted time courses. However, these
differences are minimal with correctly predicted dynamics. Moreover, from our
point of view, the result of DE and SOMA performance could be still improved
by increasing cost function evaluations. On this stage of our investigation, this
result is acceptable taking into account that the problem is extremely complex
with high number of the system parameters.

In last case study, the best-performed algorithm — SOMA was applied to
define parameters of the glycolysis model in human stem cell. SOMA was able
to correctly predict time courses of seven from twelve metabolites. The research
requires additional calculations. Possibly, number of cost function evaluations
could be increased. Taking into account the fact that we have applied quite high
number of cost function evaluations and it has required high computational
effort, the further investigation could be carried out using more powerful
computational resources.

This result could be also improved by including new experimental data. For
our calculations, we had only measured data for 12 metabolites. Overall number
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of the species in the system is 21. The other way of improving results could be
update of the model. As have been mentioned above, the model has been
constructed using software CellDesigner based on literature and experts opinion.
However, specific metabolic features of stem cells are not yet well known.
Presumably, there are could be certain inaccuracies in the system of ODEs.

The obtained results give us a reason to believe that heuristic optimization
techniques are capable to accurately define parameters of such complex systems
as metabolic networks. In the dissertation was shown that in cases where the
most commonly used evolutionary algorithm — GA failed in predicting system
dynamics, the modern evolutionary techniques such as DE and SOMA were
capable of precise defining system parameters.

In the dissertation, evolutionary algorithms were firstly applied on two large-
scale metabolic systems, the urea cycle model and the model of glygenolysis in
skeletal muscle, which can be related to so called real-world problems.

One of remarkable contributions of the dissertation is that a novel, not
known in bioscience evolutionary technique — SOMA was applied to define
parameters of large-scale metabolic systems. The other contribution is the
parameter identification of the stem cell metabolism model based on
experimentally measured data. Moreover, our investigation of the system’s
parameters is one of the main parts in whole study of human stem cell
metabolism that has been carried out in the stem cell laboratory at Department
of Biology, Faculty of Medicine, Masaryk University (Brno).

Overall, the results of modeling showed that evolutionary algorithms provide
an effective approach in parameter estimation of metabolic models and could be
used even in large-scale problems.

The objectives of the dissertation were reached:

1. To apply various evolutionary techniques to modeling of well-
studied metabolic systems.

Three evolutionary techniques, GA, DE and SOMA, were applied to
define parameters of three well-studied metabolic systems: the urea
cycle (Case study 1), a three-step pathway (Case study 2) and the model
of glycogenolysis in skeletal muscle (Case study 3). The results of the
urea cycle and a three-step pathway modeling were presented on
international conferences.
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2.  To evaluate and compare the performance of each algorithm.

In each case study, performance of evolutionary algorithms was
compared taking into account number of cost function evaluations.
Furthermore, various algorithm settings were applied and compared.

3. To apply selected evolutionary techniques to estimate parameters of
the model of glycolysis in human stem cell based on real
experimental data.

In case study 4, the best-performing algorithm — SOMA have been

applied to define parameters of the model of glycolysis in human stem
cell.
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APPENDIX A

System of differential equations, which make up the urea cycle model:
eqn; = ¢'(t) = Vocr()-Vass(b);

eqny = a'(t) = Vas(t)-Vare(1);

eqn; = u'(t) = Var(t);

eqny = atp'(t) = Vagp(t)-Vass(t);
eqns = pp'(t) = -Vpp(t)+Vass(t);
eqng = f'(t) = -v(t)+vas(t);

eqny = as'(t) = Vass(t)-Vas(t);

eqns = 0'(t) = Varg(t)-Voe(t);

eqng = cp'(t) = Vep(t)-Voed(t);
eqnio = asp'(t) = Vasp(t)-Vass(t);
eqn;; = amp'(t) = -Vamp(t)+vass(t);
eqnz = p'(t) = -vy(t)+Vocl(t);

Ornithine carbamoyl transferase (OCT)
Voct(t) = Coct (l/denomoct ) (CP (t) o (t) kl,oct k2,oct k3,0ct k4,oct -C (t) p (t) k-4,oct k-3,oct
k-2,oct k-l,oct )a

denomee = ¢ (t) K3 00t K00t Kot oct P (1) (Keaoer K200t Kot0et € (1) (K oet K3 00t Koz ot
* Kg ot K300t Kotoet) T Kot Kot oet K300t T 0 (1) (€ (1) Keg oot Kosj0et Kojoet + Keaoet Kooct
K3 0ct)) T K200t Kot oct Kaoct T Kot oct K300t Kaoct 0 (1) Kojoct K300t Kaoct T p (1) (€ (1) k-
300t K200t Kioct T K oct Kioct Kaoct T Kioct K300t Kot T 0 (1) (€ (1) Kz oct Kioet Kooet +
K1 oct K2,0ct K3,0ct 7 K1 oct K200t Kaoct))s

Argininosuccinate synthetase (ASS)
Vass(t) = Cass (l/denomass ) (kl,ass kZ,ass k3,ass k4,ass k5,ass k6,ass c (t) atp (t) aSP (t) - k-
1,ass k-2,ass k-3,ass k-4,ass k-5,ass k-6,ass pPp (t) amp (t) as (t))9

denomygs = K 1 ass Koass Ksass Ke.ass (K3.ass T Kaass) T Kiass K2.ass K3.ass Kaass Keass € (t)
PP () + Kiass Ko ass Ksass Koass (Kozass T Kajass) € (1) 1+ K ass K3ass Kaass Ks ass Kogass aSp
(t) as (1) + K1 ass K3 ass Kaass Ksass Koass @SP (t) + Kiass Ko ass K356 Kaass Keass € (1) atp
() PP (1) + Ky ass Ko ass Ks ass Ko ass (K3, T Kaass) € (1) atp (1) + Ky ags Ko ass K3 055 Keass
K555 € (t) pp (t) amp () + Ky ags K3 a65 Kaass Ksass Ko ass € (£) aSp (£) + Ko a5 K3 ass Ka ass
Ks,ass Kog,a55 atp (t) asp (t) as (1) + Ko aes K3 a6 Kaass Ksass Keass atp (1) asp (t) + K. a6
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K3 ass Kaass Kosass Keass @asp (t) amp (t) as (t) + Kiass Koass Kaass (Kaass Ksass T Kaass
Kgass T Ks ass Ke.ass) € (1) atp (t) asp (t) + ki ass Ko.ass K3.ass Kaass Keass € (t) atp (t) asp
(1) PP (V) + K 156 K2ass K3 as5 Keaass Koass PP (1) + Ko ass Ko ass K ass Kaass Kosass € (1) atp
(t) asp (t) amp (t) + K.1 ass Kooass Ks.ass Kogass (K3.ass T Kaass) @S (1) + Ky ass Koass K305 K-
4.5 Ksass € (1) atp (1) pp (1) amp (£) + Kp ass K .ass K355 Ko ass Kosass PP (1) amp () +
K2 ass K3.ass Kaass Kosass Kegass atp (t) asp (t) amp (t) as (t) + Kojass Koass K3ass Kaass k.
6.ass PP (1) @S (1) + Koass K3 ass Ko ass Kosass Kogass atp (£) pp (1) amp (1) as (1) + k. a5 k-
2.ass Ko5.ass Ko6ass(Ko3.assTKa.ass) @mp (1) @s (1) + Kj ass K3 ass Kogass Kosass Kgass asp () pp
(t) amp (t) as (t) + Kgass K5 ass Kigass (Kot ass Ko2ass T Ko1ass Ko3.ass T Kz ass Koz as5) PP (1)
amp (t) as (t) + K as Ko.ass K3 ass Kaass Kosass © (1) atp (t) asp (t) pp (1) amp (t) + ko ass
K3 ass Ka.ass Kos.ass Kooass atp (t) asp (t) pp (t) amp (t) as (t);

Argininosuccinate lyase (ASL)
Vas(t) = Cas kl,as k2,as k3,as as (t) - k-3,as k-2,as k-l,as a (t) f (t)/denomas;

denomas = f (t) k-Z,as k—l,as +a (t) (f (t) k-3,as k-Z,as + k-3,as k-l,as + k-3,as k2,as) + k-l,as
k3,as + k2,as k3,as + as (t) (f (t) k—Z,as kl,as + kl,as kZ,as + kl,as k3,as);

Arginase

Varg(t) = (€arg (Ki,arg K2,arg K3.arg @ (1)))/denomyg;

denomye = 0 (t) (K3 are Kot arg T K3 Koare) + Kot arg Kaare T Koarg Kaare T @ (t) (K arg
K arg T K1 arg K3ar);

Rate equations for the co-substrates and products that are peripheral to the
cycle:

Vaip(t) = Kap atppool (1);
Vpp(t) = kpp PP (1);

vi(t) = k¢ £ (1);

vep(t) = kep ampool (t);
VaSp(t) - kasp asppool (t);
Vamp(t) = Kamp amp (0);
vp(t) =kp p (1);

atppool (t) = 1.0 x 10™%;
ampool (t) = 1.0 x 10™;
asppool (t) = 1.0 x 10™;
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Estimated paramcters for the urea cycle model:

Nominal values
€oct = 2.6 x107%;
Ki,oct =1.7%x107;
K. 1,0ct =63;

k2,00t =2.1%x10%;
kK 2,00t =1.0 x 103;
Kk3,oce =3 x10°;
k3,00t = 9.0 x10%;
Ki,oct =2.6x10°%;
K.4,00t =5.0x10%;
€ass = 4.0 x 10°°;
K1,ass = 2.4 x 10 5;
K.1,ass = 2.3;
K2,ass = 3.5%10°5;
K. 2,ass = 10.0;
K3,ass = 4.8 <10°5;
k_3,ass = 10.0;
Ki,aes =2:0%x 10~1;
K_4,ass = 8.9x10"5;
Ks,ass = 5.0x 107 1;
K_5,a8s = 6.4 x10"5;
Kg,ass = 5.0 210~ 1;
K.g,ass = 1.7»10"5;
€as = 2.2 x 107%;
Ki,as = 2.7 x 10%;
K.1,as = 7.0 x 10%;
ky,as = 7.5 x 10%;
K y,as = 1.5 x 10%;
K3,as = 1.1 x 10%;
K 3,as = 7.0 x 10°;
€arg = 8.9 x107%;
Ki,arg = 1.0x107 ;
kK.1,arg = 5.4x10%;
ky,arg = 5.3x10°%;
k3,arg = 3.0x10%;
k.3,arg =1.0x107;
Katp = 6.6 x 107%;
kpp = 6.6 x 107%;
ke =6.6 x 107%;
kep = 6.6 x 107%;
Kasp = 6.6 x 107%;
Kamp = 6.6 x 107%;
kp = 6.6 x 107%;

Values estimated by SOMA
€oct = 1.2x107%;
Ki,00t =8.3x10°%;
k—l,oct = 44;

k2,00t =2.5x10°%;
K.2,0ct = 1.2 x 10°%;
k3,00 =6 X107 3
K300t =2.2 x10%;
Koot =2.2%x10%;
K400t =7.0x10%;
€ass = 6.8 x 107°%;
Ki,ass = 9.5x10°;
k.1, a88 = 167
kK2,ass = 1.4x105;
k 2,ass = 9.6;

k3,ass = 4.2x10%;
k 3,288 = 9.7;

K4,ass = 2.7 x 10%;
K_4,ass = 10.7x10°;
Ks,ass = 2.3 x 10%;
K5 ass = 9.4%x10%;
Ke,ass = 9.4 x 10%;
K 6,ass = 4.8x10°%;
€as = 1.1 x 107%;
Ki,as = 8.2 x 10%;
K.1,as = 8.7 x 10%;
Ky,as = 6.9 x 10%;
K 3,as = 1.3 x 10%;
K3,as = 6.9 x 10%;
K 3as=12.1 x 10°;
€arg = 7.1 x107%;
Ki,arg = 3.9%x107 ;
K1,arg = 4.8x10%;
ky,arg = 17.4x10°;
ks,arg = 17.7x10%;
k 3,arg = 1:5x%107 ;
Katp = 5.1 x 107%;
kpp = 8.0 x 107%;
ke =4.6 x 107%;
Kep = 6.9 x 107%;
Kasp = 10.7 x 107%;
Kamp = 11.6 x 107%;
kp=17.9 x 107%;
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APPENDIX B

System of differentia: equations, which make up a three-step pathway
model:

dzl = ni}/l 1 nal _k‘ Gl
1+(L) +(K_a)
Kil S
djz N IH'E/2 naz k2 ’ G2
¢ 2
(i) ()
Ki2 M1
ng = m'yé na3 k3 ) G3
1+(_P_) +(.K£‘_)
Ki3 M2
dEl VoGl Ls.pi
dt K,+Gl
dE2 VG2 _ispo
d K;+G2
dE3 _ Vi'G3 | s
d K;+G3

1 1
- =kcaz‘1 E1l (—E;n—l) (S—Mg—kcat2 E2 (K—m3) (M1-M2)

dt S M1 M1 M2

l+—+—— l+—+—

Kml Km2 Km3 Km4

1 1
kcat, E2*| —— | (M1--M2) kcat," E3:|——|(M2-P
am2 " (Km3)( ) ket (KmS)( )
dt l+ﬂ+ M2 1+ﬂ+ y
Km3 Km4 Km5 Kmb6
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Estimated parameters for a three-step pathway model

Parameter values estimated by SOMA

Nominal values

Vi = 4.14;
Kil = 6.5

vy =1;

Kil=1;

o

nil=1.6

nil = 2;

°
4

3.5

nal =1.2;

Kal

Kal =1;

nal = 2;

kl1=5.9;
Vy = 2.4;

Ki2 =8.7;

313

Ka2 =5.9;

ni2

na2 =1.5;

k2 =0.46;

=13

=7.37;
Ki3 = 0.21;
ni3 = 0.35;

V3
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o e
R
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o
o o !
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M a XM

Vy=0.72;
Ky = 8.6;

Vg = 0.1;

Ky

.
4

k4 = 0.098;
Vs =1.09;
K5 = 6.5;

k4 =0.1;
V5 = 0.1;

K5:1;

k5 =10.15;

k8 =0.1;
Vg = 0.1;

Ke =1;

Ve = 0.25;
1.26
k6 = 0.15;

°
4

Ke =

k6 =0.1;

kcat; = 4.03;

Kml = 7.47;

Km2 =1.22;

.
14

5.66

Km3 = 3.16;

kcat,

Km4 = 3.04;

°
 J

~
< ™ oo
"y
._%::
c 1 O
SEE&
=

— -
t3____
© 10 O
SEE&
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APPENDIX C

System of differential equations, which make up the model of
glycogenolysis in skeleta:i muscle:

eqn;= GLY'(t) — -ﬂupr(t);

eqny= G1P'(t) = fluxgp(t)-V -grm(t);

eqn;= G6P'(t) = VegLm(t)- Vrai(D);

eqns= FOP'(t) = Vpgi(t)-Verr(D);

eqns= FBP'(t) = Vppx(t)-Varp(b);

eqng= DHAP'(t) = VaLp(t)+ Vrpi(t);

eqny= GAP'(t) = Varp(t)-V1o1(t)-Vearpu(t);
eqng= BPG13'(t) = Vappu(*)-Veok(D);

eqng= PG3'(t) = Vrcx()-Veam(D);

eqnie= PG2'(t) = Vpam(t)-VrnoL(1);

eqny;= PEP'(t) = Venor(t)-\ px(1);

eqnip= PYR'(t) = Vpx()-Viru(t);

eqn;s= LAC'(t) = Vypu(t)-output;

eqnys= Pp'(t) = -fluxgp(t)-V appu(t)+Varpase(t);
eqnis= ADP'(t) = Vppx()- Vo (£)-Ver (D)2 V apk () + Ve (VY atpase(t);
eqn;e= ATP'(t) = -Vprx (D) +Vear (D+Vex(t)-Vapk (t)-Vek ()-V atpase(t);
eqni7= AMP'(t) = -V apk(1);

eqnig= PCr'(t) = Vex(1);

eqnio= CR'(t) = -Vck(1);

eqnyo= NADH'(t) = Vgappu(t)-Vipu(t);

eqny= NAD'(t) = -Vgarpu(O)+Vipu(t);
Glycogene Phosporylase (GPa, GPb)

GLY (t) Pp (t)
Vgpa (t) = —————

VmafoPa - VmaerPa

GLY (t) G1P (t) )]/

KicrLvra Kp,, Keryb Kicipa

( GLY (t) P, (t) GLY (t) G1P (t) GLY (t) Pp (t) GLY (t) G1P (t) ]
1+ + + + .

+ +
Kicryfa Kipp, Kig.vb Kigira Kerve Kipy, Kervo Kigira

Vmaxfera Keryb Kicipa

Vmaxrepa = i
’ Kicryra Kp,, Keqapa

GLY (t) Pp (t) GLY (t) G1P (t)
Vapp (t) = | Vmaxfepp | ———— - — VmaxrGeb )
KicrLyep Kp ) Kigryp Keieb
AMP (t)PH GLY (t) Pp (t) GLY (t) GIP (t) GLY (t) Pp (t) GLY (t) G1P (t)
/ 1+ + + + + +
Kanp,. Kieryfp Kip,, Kicryp Kiciep Kieryep Kp, Kieryb Keiep

AM nH
[1+ il P

Kanp,,

Vmaxteeb KicrLyb Keipp
VmaxrGeb = 7
Kerye Kip,, Kegerp
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fluxgp (t) = frac, Vgpa () + fracy Vepp (t)

Phosphoglucomutase and Phosphoglucoisomerase (PGLM and PGI)

/

G1P (t)
VmaxfpeLy ——
Ke1poo

G6P (t)

Veey (t) = Vimaxrpern

GIP (t) G6P (t) )
1+ + H

Ke6Pporn Ke1Ppern Ke6Ppoy

Vmaxtpern Ke6pyg,
VmaxrpeLy = ————————-;
K61P, Kegrarn

G6P ‘t) F6P (t) G6P (t) F6P (t)
Veer (t) = | |Vmaxtrer — | = | Vmaxrper ——— / 1+ + ;
Ke6E o Kr6p,; Ke6pye; Kr6pys:
Vmaxrper Keep,e, Kagrar
Vhaxfper = 7

KF6ppe;

Phosphofructokinase (PFK)

ATE (t) F6P (t)

ADP (t) FBP (t)

Vprk () = | | Vmaxeprx ~ VnaxrpFK / delta (t)

KaDPyrx KFBPos /
((L+aL (t) (deltaaw (t) /delta (t) )3) / (1+L (t) (deltane (t) /delta (t))4));

Karp,« Krep
PFK

F6P (t) ATP (t) | ADP (t) FBP (t) ADP (t)
delta(t):[l+— 1+ + + 1+—);
Kr6ppee 7 RaTp,m Rapp,ex KrBPoex Kappyex
F6P (t) ATP (t) | ADP (t) FBP (t) ADP (t)
deltaser (t) = [l + ——) 1+ + + 1+ B
Krépect Karpact Kappact Krppact Kappact

Kr6p,r KaTP,py
0= ——————

Krépact Karpact

ATP (t
[[1+ TP ( )]/ (1+dATP (t))] [[l+eAMP (t)
KiATP

Kiarp Kaanp

L (t) =Ly

VimaxfPFK Kappuey K *BPprx
VmaxrpF = i
Rarpeex KF6pyy,

Aldolase and Triose Phosphate Isomerase (ALD and TPI)

FBP (t) DHAP (t) GAP (t) FBP (t) DHAP (t) GAP (t)

1+ + +
KFBPaso Kpnar,, Kear,,,

VmafoLD vma.xrALD

KFBParp

Varp (t) =
/

Kpuar,,, Kear,,,

Vmax£arp Kpuar,, %aar,,
Vmaxrarp = H
KrBp,rp Kegar :
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GAP (t) )
VmaxfTPI

DHAP (t)
VmaerPI

DHAP (t) GAP (t)
1+ + :
KDHAP Kear,,,

Vepr (t) =

/

KGAPTPI KDHAPqe:

Vmax£rpT KDHAPLp;
Vmaxrrpr = ——;
Keap,,; Kegrrr

Glyceraldehyde-3-Phosp hate Dehydrogenase (GAPDH)

GAP (t, NAD (t) P, (t) BPG13 (t) NADH (t)
Vearpr (t) = | | Vmaxseappr = | Vmaxrearpn / Deappn (t) 7
KGAPGA}‘:-H KNADGAPDH KPpGAPDH KBPe13gapon Kr\mDI-IGM,,_)H
GAP (t) NAD (t) Py (t) GAP (t) NAD (t)
DGAPDH (t) =1+ 2 o = & +
KeaPowrs  KiaDewon  Kepouow  KeAPopson KNADGaep
GAP (t) NAD (t) P, (t) B3G13 (t) NADH (t) BPG13 (t) NADH (t)
+ — + + :
KGAPGAPDH KNADGAPDH KPpGAPDB E ‘BPG13gappn KNADHGAPDH KBPGl3GAPDH KNADHGAPDH

Vmax£Gappi KBPG13¢appn KNADHgpppy
VmaxrGAPDH = H
KGAPGAPDH KNADGAPDH KPpGA" H KquAPDH

Phosphoglycerate Kinase (PGK)

BPG13 (t° ADP (t) PG3 (t) ATP (t)

Vper (t) =

VmafoGK VmaerGK

Kpa3,ex KaTPpsx /
(1 BPG13 (t) ADP (t) BPG13 (t) ADP (t) PG3 (t) ATP (t) PG3 (t) ATP (t)
+

Kppe13,, Kappuex
PG?

+ - £ + +
Kppe13,e KaDPoox KBpe13,cx Kappoex Kpa3pex RaTpoex Kpe3,er KaTpoex

~e

Vinaxrpek KBpe13,e Kapp, x Kegpek
Vmaxfpek = ;
Kpe3,e Karpoex

Phosphoglyceromutase :ind Enolase (PGM and ENOL)

PG3 (t) PG2 (t) PG3 (t) PG2 (t)
Vpen (t) = | | Vmaxtren = | Vmaxrpen / 1+ + H
Kpa3,q Kpa2,q, Kpa3,ey Kpa2pey
Vmax£pen KPGZPGM
VmaerGH = *;
Kpa3,e, Kegrai
PG2 (t) PEP (t) PG2 (t) PEP (t)
Venor (t) = | | Vmaxsenor | = | VmaxrEnoL / 1+ + ;
KPGZENOL KpEPgyor Kpe2gy, KeEPgyon
Vmax£ENOL KpEPyo
VmaxrEnor = H

KpG2,,0;, KegENOL
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Pyruvate Kinase (PL.)

PEP (t) ADP (t) PYR (t) ATP (t)

Vek (t) =

VmafoK VmaerK

Kpyr,x Karp,, /

PEP (t) ADP (t) PEP (t) ADP (t) PYR (t) ATP (t) PYR (t) ATP (t)
1+ + — + + + + ;
KpEep,( Kappy« Kpep,, Kappy, Kpyryy Karpy, Kpyryx Karpy,

Kpep,, Kabp,

Vmax£pr Karpy, Kpys
Vmaxrpk = —i
Kpep,x Kappyx Kegpr

Lactate Dehydrogenase (LDH)

PYR /t) NADH (t) LAC (t) NAD (t)

Vipn ( t ) = VhaxfLDH VmaxrLDH

Krac Knap,,, /

PYR (t) NADH (t) PYR (t) NADH (t) ILAC (t) NAD (t) LAC (t) NAD (t)
1+ + —+ + + +
KpvRrppy Kyabn, o Kpyry,y Knab,,, Krac KNaD, Krac Kyap,,,

Kp 1Rypn KnapH,p,

~e

Vmaxfron Krac Knao,,,
VmaxrLpe = i
Kpyr,py Knabh,,, Ke won

Creatine Kinase (Ck)

ATP (t) CR (t) ADP (t) PCr (t)

Vex (t) =

Vmaxrcx Vmaxf CK

Kiappe Kpor /

ADP (t) PCr (t) ADP (t) PCr (t) ATP (t) ATP (t) CR (t)
1+ + + + +
Kiappgy Kiper Kiappex Kper KiaTpeg Kiarpe Ker

Kiarse Ker

°
4

Vmaxrck Kiarpy, Ker Keqek
Vmaxfck = H
Kiapp Kecr

Adenylate Kinase (ADK)

ATP {t) AMP (t)

Vapk (t) = | | Vmaxsapk

ADP (t) ADP (t)
VmaxrADK ] ]/

Ka' papx KaMpypy KapP,ox Kapp,ox

ATP (t) AMP (t) ATP (t) AMP (t) 2ADP (t) ADP (t) ADP (t)
1+ + -+ + +
Rarpanx Kamp,, Rarp,ox Kampaox Kapp,px Rapp,px KaDPapx

4

Viax£apk Kabp,px Kiidpapg
Vmaxrabk = ;
Karpapr KaMp,or Kegabk

ATPase
VATPase (t) = k ATP (t);
k=0.075;
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Estimated parameters for the model of glycogenolysis in skeletal muscle:

Nominal values of pararieters

frac, =0.5;
frac, =0.5;
Vmaxfepa = 0.02;
KicLyfa = 2;

Kp,, = 4;

Keryp = 0.15;
Kigipa = 10.1;
Kippa =4.7;
Kerye = 1.7;
Kegepa = 0.42;

Vmaxfepp = 0.03;
Kicryep = 155
Kp,=0.2;
KicLyp = 4.4;
Keipp = 1.5;
nH=1.75;
Kamp,,, = 1.9%x107¢;
KiPpb = 4.6;
Kicipp = 7.4;
Kegepp = 0.42;
Vmaxgpery = 0.48;
Keippy, = 0.063;
Ke6ppgy, = 0.03;
Keqpern = 16.62;

Vmaxrper = 0.88;
KGGPPGI = 0.48;
Krepy, = 0.119;
Kegqper = 0.45;

Vnmaxfprk = 0.056;
Karp,x = 0.08;
Krep,,, = 0.18;
Kapppg = 275
Krppy, = 4.02;
Karpact = 0.25;
Krgpact = 20;
KrBpact = 4.02;
Kappact = 2.7;
KiATp = 0.87;
Kaamp = 0.06;

Lo = 13;
d =0.01;
e=0.01;

The estimated parameters by SOMA

Vmaxfepa = 0.08;
Kicryfa = 3.8;
KPpa = 10-4;
Keryp = 0.96;
Kigipa = 12.8;
Kip,, = 16.7;
Kerys = 6.05;
Kegqepa = 0.12;

Vmaxfepp = 0115
KigLysp = 28.6;
Kp, =0.79;
KigLyp = 4.9;
Keipp = 3.7;
Kamp,,, = 3.7%x107%;
KiPpb =9:9;
Kieipp = 3.9
Kegepb = 0.25;
Vnaxgeperu = 0.50;
Ke1p,y = 0-22;
Kebppey, = 0.63;
Kegrer = 6.04;

Vmaxrper = 3.07;
KgspPGI = 0-33;
KFGPPGI = 0-38;
Kegqper = 0.06;

Vmaxterk = 0.07;
Rarppy = 0.79;
Krépy, = 0.51;
Kappye = 10.7;
Krppyy = 4.02;
Karpact = 0.04;
Krépact = 48;
Krppact = 11.2;
Kappact = 26.3;
Kiarp = 0.91;
Kaanp = 0.08;
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Vmaxfarp = 0.104;

Keqarp = 9.5%x107°;
Vmaxerer = 125
KpHaPg; = 0.61;
Keap,,, = 0.32;
Regrer = 0 052
Vmaxfeapp = 1.265;
Kepa13gp = 0-0008;
KnaDHgppy = 00033 ;
Keap,,,,, = 0.0025;
KNADGAPDH = 0.09;

Kp camn = 00293
Keqearpn = 0.089;
Vmaxrpek = 1.12;
KBpGg13,, = 0.002;
Kapp,x = 0.008;
Kpa3ye = 125
Karp, = 0.35;
Kegeex = 57 109;
Vmaxfpey = 1.12;
Kpaz,, = 0.014;
Kpa3y, = 0.2
Kegpey = 0.18;
Vmaxfenon = 0.192;
KpEPpyor, = 0.37;
KPGZBNOL =0. 1;
Kegenor, = 0.49;
Vmaxfpk = 1.44;
Rarp,, = 1.13;
Kpyry, = 7.05;
Kpgp,, = 0.08;
Kapp,, = 0.3

Koqex = 10 304;
Vmaxfron = 1.92;
Krac = 17;

KyaDg,, = 0.849;
Kpyr,,, = 0.335;
Kyapn,,, = 0.002;
Kequon = 16 198;

Vmaxfarp = 0.96;
KpHap,, = 8.8;
Keap,,, = 3.6;
Krpp,, = 0.33;
Keqarp = 16.8x 107°;
Vmaxsrpr = 16
Kpuapg,,; = 0.34;
Keapy,, = 0.50;
Keqrer = 0.39;
Vmaxteappn = 7+2;
KBPG13gpppy = 0.002;
KNADHgappy = 0 005;
KeAPgpppy = 0007
KNADgpppy = 0125
Kppoaron = 04373
Keqearpr = 0.17;
Vmaxrpek = 7.6
KBpG13,, = 0. 0137
Kappyex = 0.05;
Kpg3,e = 3023
Karppe, = 0.23;
Keqpex = 6013;
Vmaxtpey = 3.59;
Kpg2,e, = 0.010;
Kpea,g, = 1.36;
Kegpa = 0.37;
Vmaxfenor = 0.89;
Kpgpyyo, = 2.92;
Kpaz,,,, = 0.96;
Kegenor, = 0.42;
Viaxtek = 4.97
Karp,, =2.05;
Kpyry = 10.2;
Kpgp,, = 0.06;
Kapp,, = 0.46;
Kegpg = 43104;
Vmaxfron = 4.78;
Krac = 39;
Kyap,,, = 0.56;
Kpyr,,, = 0.35;
Kyaph,,, = 0.006;
Keqron = 12892;
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Vmaxrck = 0.5; Vmaxrck = 0.609;

Kiarpy = 3.55 Kiarp, = 27.4;
Ker = 3.8; Ker = 4.6;
Kiappy = 0.135; Kiappe = 1.29;
Kipcr = 3.9; Kiper = 17.3;
Kper = 1.11; Kper = 2.02;
Keqck = 233; Keqck = 368;
Vmaxfapk = 0.88; Vmaxfapg = 0.95;
KADPADK = 0~35; KADPADK = 0.74;
Karpyx = 0.27; Karp,,, = 0.03;
Kampyr = 0.32; Kaupype = 0.24;
Kegapk = 2.21; Kegapk = 2.49;
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APPENDIX D

System of differential equations, which make up the model of glycolysis

in human stem cell:

eqnl = ADP’ (t) == - (K_r19 ADP (t) PEP (t)) / (Km_ADP. r19 Km PEP.rl19 +
Km_PEP.r19 ADP (t) + Km_ADP._r19 PEP (t) +ADP (t) PEP (t)) -

K_Frlé ADP (t) BEG13 (t) K_Rrl6 PG3 (t) ATP (t) )/

Km_13BPG_rl6 Km_ ADP._rlé6 Km _3PG_rl6 Km ATP._rlé6
ADP (t) BPG13 (t) ADP (t) BPG13 (t)
e 3 -

+
Km_ADP_rl6 Km_13BPG_rl6 Km_13BPG._rl16 Km ADP.rlé6
PG3 (t) ATP (t) PG3 (t) ATP (t) ]

+ + +

Km_3PG_rl6 Im ATP. rlé6 Km_3PG_rl6é Km ATP _rl6
(K_r5 GLY (t) ATP (:)) / (Km_ATP_r5 Km Glu_r5 +Km ATP_r5 GLY (t) +
Km_Glu_r5 ATP (t) +GLY (t) ATP (t)) + (K_xr9 F6P (t) ATP (t)) /
(Km_ATP._r9 Km FE¢P_r9 +Km ATP_r9 F6P (t) + Km_F6P_r9 ATP (t) + F6P (t) ATP (t));

K_Fr 2 DHAP (t) _ K Rrl2 GAP (t)
, Km_{ HAP._r12 Km_G3P.r12
eqn2 = DHAP’ (t) == -
1 4+ __DHAP (t) GAP (t)
km _DHAP. r12 Km _G3P._rl12

K_Freld FBP (t)
- (Km_G3P_reld4 K Rreld4 DHAP (t) GAP (t)) /Km _DHAP. reld + —  ~

/ [1+

Km_F16BP_rel4

DHAP (t) GAP (t) Km_G3P_reld4 DHAP (t) GAP (t) FBP (t) )
+ + H

Km_DHAP. reld Km_G3P._reld Km_DHAP._reld Km _F16BP_rel4

K_Frl2 [ HAP (t) _ K Rrl2 GaP (t)
Km_DHAj rl12 Km _G3P.rl12

eqn3 = GAP’ (t) == -
1+ D.(AP (t) GAP (t)
Km_J'HAP_r12 Km_G3P_rl2
K_Rrld BPG13 (i.) NADH (t) K_Frld4 GAP (t) NADp (t) /
+

Km_13BPG_rl4 Ki. NADH rl4 Km_G3P._rl4 Km NADp. rl4
" GAP (t) BPG13 (t) NADH (t)

+ + +

Km_G3P._rl4 Km_13BPG._r14 Km_NADH._r14
BPG13 (t) I'ADH (t) NADp (t) GAP (t) NADp (t) )
+ +

+
Km_13BPG_rl4 Im NADH rl4 Km_NADp._rl4 Km _G3P_rl4 Km NADp_rl4

K_Frel4 FBP (t)
- (Km_G3P._rel4 K.Rrel4 DHAP (t) GAP (t)) /Km DHAP. reld + — / 1+

Km_F16BP_rel4d
DHAP (t) GAP (t) Km _G3P_reld4 DHAP (t) GAP (t) FBP (t) J
-~ + + ;
Km_DHAP. rel4 Km_G3P._reld Km_DHAP. rel4 Km _F16BP_reld

¥_Rrl4 BPG13 (t) NADH (t) K_Frl4 GAP (t) NADp (t)
egn4d = BPG13’ (t) == [— — # /
Kie 13BPG_rl4 Km NADH rl14 Km G3P_rl4 Km NADp_ ril4
GAP (t) BPG13 (t) NADH (t)
" Km_G3P_r14 = Km 13BPG.r14 = Km NADH rid
BPG13 (t) NADH (t) NADp (t) GAP (t) NADp (t)
Km_13BPG_rl4 Km NADH rl4 ’ Km_NADp._rl4 " Km _G3P.rl4 Km NADp_rl4 )7
K_Frl6 ADP (t) B2G13 (t) K_Rrl6 PG3 (t) ATP (t)
Km 13BPG_r16 Km ADP_rl6 Km 3PG._rl6 Km ATP. rl6 )/

ADP (t) BPG13 (t) ADP (t) BPG13 (t)
+ B +

Km_ADP.r1l6 Km_13BPG_rl6 Km_13BPG_rl6 Km _ADP._rlé6
PG3 (t) ATP (t) PG3 (t) ATP (t) ]

&

+ +
Km_3PG_rl6 Km_ATP._rl6 Km 3PG_rl6 Km ATP._rlé6
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r17 K Frl7 PG3 (t) rl7 K Rrl7 PG2 (t)

5 rl7 Km 3P3 rl7 rl17 Km 2PG_rl7
eqn5 = PG3" (t) = -
1 PG3 (t) PG2 (t)
r17 Km _3PG_rl7 rl7 Km_2PG._r17
K_Frl6 ADP (t) BPG13 (t) K_Rrl6 PG3 (t) ATP (t) /
Km_13BPG.r16 Km ADP.rl6 Km _3PG._rl6 Km ATP. rl6
ADP (t) BPG13 (t) ADP (t) BPG13 (t)
1+ + — + +
Km_ADP. rl6 Kn: _13BPG_r1l6 Km_13BPG_r1l6 Km ADP.rlé6
PG3 (t) AP (t) PG3 (t) ATP (t)
— 4 s
Km_3PG_rl6 Km _2TP._r16 Km_3PG_rl6 Km ATP.rl6
r17 K Frl7 P63 (t)  rl7 K Rrl7 PG2 (t) K_Frl8 PG2 (t) K Rrl8 PEP (t)
, rl7 Km_3PG. =17 rl7 Km 2PG_rl7 Km _2PG_r18 Km_PEP_r18
eqné = PG2’ (t) = -
14+ PG3 {t) PG2 (t) L _FG2(t)  _ PEP ()

rl17 Km _2PG_rl7 rl7 Km 2PG_rl7 Km_2PG.r18 Km_PEP. r18

eqgn7 = GLY’ (t) == K_rel9 GLYout (t) - (K_r5 GLY (t) ATP (t)) /
(Km_ATP_r5 Km Glu_ r5 +Km ATP_r5 GLY (t) + Km_Glu_r5 ATP (t) +GLY (t) ATP (t));

eqgn8 = PYR' (t) == -K_re20 PYR (t) + (K_r19 ADP (t) PEP (t)) / (Km_ADP.r19 Km PEP.rl9 +
Km_PEP._r19 ADP (t) + Km_ADP.r19 PEP (t) +ADP (t) PEP (t)) -

[ K_Frel7 PYR (t) NALH (t) K_Rrel7 LAC (t) NADp (t) /
Km_NADH_rel7 Km Pyr.rel7 Km_Lac.rel7 Km NADp.rel7
PYR (t) LAC (t) NADH (t)
1+ + — + +
Km_Pyr. rel?7 Ka Lac_rel? Km_NADH. rel?7
PYR (t) NADH (t) NADp (t) LAC (t) NADp (t)
+

+
Km_NADH. rel7 Km Yyr.rel7 Km_NADp._rel7 Km_Tac.rel7 Km NADp._rel7

eqgn9 =
K_Frl8 PG2 (t) _ K_R118 PEP (t)
, Km_2PG_r18 Km PEP. r18
PEP’ (t) == - (K_r19 ADP (t) PEP (t)) / (Km_ADP._r19 Km PEP._rl9 +
14 P62 (8) PEP (t)

Km 2PG.r18  Kn_PEP._rl8

Km_PEP_r19 ADP (t) + Km_ADP_r19 PEP (t) +ADP (t) PEP (t));

eqnl0 = LAC’ (t) =

K_Fr217 PYR (t) NADH (t) K_Rrel7 LAC (t) NADp (t)
-K_re22 LAC (t) + /

Km_NAI'H_rel7 Km _Pyr. rel7 Km_Tac.rel7 Km NADp. rel7
PYR (t) LAC (t) NADH (t)
+

— + +
Km_Pyr. rel? Km_Lac._rel7 Km_NADH._rel?7

PYR (t) NADH (t} NADp (t) LAC (t) NADp (t) ]
4 :

o
Km_NADH_rel7 Km Py:.rel7 Km_NADp. rel?7 Km_Tac_rel7 Km NADp_rel?
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E_Rrl4 BPG13 (t) NADH (t) K_Frld4 GAP (t) NADp (t)
eqgnll = NADH' (t) == |- — + - /
Kr._13BPG_rl4 Km NADH rl4 Km_G3P_rl14 Km NADp.rl4
GAP (t) BPG13 (t) NADH (t)
1+ - + +
Km_G3P._rl4 Km_13BPG._rl4 Km_NADH. r14
BPG13 (t) :IADH (t) NADp (t) GAP (t) NADp (t) ]
+ + =
Km_13BPG._rl4 i'm NADH rl4 Km_NADp. r14 Km_G3P._rl4 Km NADp. rl4

[ K_Frel7 PYR (t) NADH (t) K_Rrel7 LAC (t) NADp (t) J/

Km_NADH._rel7 Km. Pyr.rel7 Km_TLac.rel7 Km NADp. rel7
(1 PYR (t) LAC (t) NADH (t)
+

+ +
Km_Pyr. rel7 Km_Lac._rel?7 Km_NADH._rel?7

PYR (t) NADH (t) NADp (t) LAC (t) NADp (t) ]
+ .

+

4
Km_NADH._rel7 Xm Pyr.rel7 Km_NADp. rel?7 Km_TLac._rel7 Km NADp. rel?7

K_Rrl4 BPG13 (t) NADH (t) K_Frl4 GAP (t) NADp (t)
eqnl2 = (NADp)’ (t) = - |- " /
\ Km_13BPG_rl4 Km NADH rl4 Km_G3P.rl4 Km NADp.rlé4
. GAP (t) BPG13 (t) NADH (t)
+ + +
Km_G3P._rl4 Km_13BPG._rl4 Km_NADH._r14
BPG13 (t) NADH (t) NADp (t) GAP (t) NADp (t) ]
+ + +
Km_13BPG._rl14 Km NADH. rl4 Km_NADp.rl4 Km_G3P_rl4 Km NADp. rl4
[ K_Frel7 PYR (t) NADH (t) K_Rrel7 LAC (t) NADp (t) /
Km _NADH.rel7 Km_ Pyr._rel?7 Km_TLac. rel7 Km _NADp.rel7
PYR (t) LAC (t) NADH (t)
1+ + + +
Km_Pyr.rel? Km_Tac.rel?7 Km_NADH._rel?7
PYR (t) NoDH (t) NADp (t) LAC (t) NADp (t) ]
+ + :

Km_NADH.rel7 ¥m Pyr. rel?7 Km_NADp. rel?7 Km_Lac_rel7 Km NADp.rel7

K_Fr6 G6P (t) K_Rr6 F6P (t)

, F. rel8 G6P (t) Km_G6P_r6  Km F6P_r6

eqnl3 = G6P’ (t) = - - + (K_xr5 GLY (t) ATP (t)) /
Km ¢:6P._rel8 +G6P (t) 1, _G6RP(Y)  F6P(t)
Km_G6P._r6 Km_F6P_r6

(Km_ATP.r5 Km Glu r5 +Km ATP.r5 GLY (t) + Km_Glu_r5 ATP (t) +GLY (t) ATP (t));

K_rel8 G6P (t)
eqgnl4 = R5P’ (t) == H
Km_G6P._rel8 +G6P (t)

eqgnl5 = GLUout’ (t) == -K_rel9 GLUout (t);

. K_re2l PYRmit (t)
egnl6 = PYRmit’ (t) == K_re20 PYR (t) - ;
Km_Pyr. mit._re2l +PYRmit (t)

K_re2l PYRmit (t)
eqnl7 = ACo’ (t) ==

Km_?yr.mit._re2l +PYRmit (t)
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eqnl8 = LACout’ (t) == K_re22 LAC (t);

K_Fr6 G6P (t) K Rr6 F6P (t)
P Km_G6P._r6 Km_F6P._r6
eqnl9 = F6P’ (t) = - (K_xr9 F6P (t) ATP (t)) /
1 G6P (t) F6P (t)
Km_G6P_3. 5 Km_F6P._r6

(Km_ATP_r9 Km_F6P._r9 +Km ATP._r9 F6P (t) + Km_F6P_r9 ATP (t) + F6P (t) ATP (t));

eqn20 = FBP’ (t) =

K_Freld FBP (t)
- |- (Km _G3P_rel4 K _Rreld4 DHAP (t) GAP (t)) / Km_DHAP. reld + /

Km_F16BP_rel4d
DHAP (t) GAP (t) Km _G3P.reld DHAP (t) GAP (t) FBP (t)
1+ + + + +
Km_DHAP. reld Kin_G3P._reld Km_DHAP. rel4d Km _F16BP_reld

(K_r9 F6P (t) ATP (t)) /
(Km_ATP. r9 Km _F6P_r9 +Km ATP._r9 F6P (t) + Km_F6P_r9 ATP (t) + F6P (t) ATP (t));

eqn2l = ATP’ (t) == (K_xr19 ADI (t) PEP (t)) / (Km_ADP._r19 Km PEP.rl19 +
Km_PEP. r19 ADP (t) - Km_ADP.r19 PEP (t) +ADP (t) PEP (t)) +

K_Frl6 ADP (t) BPG13 (t) K_Rrl6 PG3 (t) ATP (t) /

Km_13BPG_rl6 Km_ADP.rlé6 Km_3PG._rl6é Km ATP. rl6

(1 ADP (t) B?2G13 (t) ADP (t) BPG13 (t)
"

+ — +
Km_ADP.rl6 Km_13BPG_rl6 Km_13BPG_rl6 Km ADP._rlé6
PG3 (t) ATy (t) PG3 (t) ATP (t) ]

+ _

+

"
Km_3PG._rl6 Km_ATP._rl6 Km_3PG_rl6 Km ATP._rl6

(K_xr5 GLY (t) ATP (t)) / (Km_ATP_r5 Km_Glu_r5 +Km ATP.r5 GLY (t) +
Km_Glu r5 ATP (t) +GLY (t) ATP (t)) - (K_r9 F6P (t) ATP (t)) /
(Km_ATP.r9 Km F6P_r9 +Km ATP._r9 F6P (t) + Km_F6P._r9 ATP (t) + F6P (t) ATP (t));

Estimated parameters for the model of glycolysis in human stem cell:
K_Glu =0.92;

K 15 =7.44;
Km_Glu_r5 =2.65;
Km_ATP_r5 =2.68;
K_Fr6 =9.14;

K_Rr6 =6.67;
Km_G6P_r6 =2.61;
Km_F6P_16 =8.23;
K.19 =7.81;
Km_F6P_19 =8.06;
Km_ATP_19 =4.381;
K_Fr12 =6.14;

K_Rrl12 =3.78;
Km_DHAP_rl12 =1.27;
Km._G3P_r12 =3.64;
K _Fr14 =8.54;
Km_G3P_r14 =8.11;
Km_NADp_rl4 =4.62;
K_Rrl4 =5.29;
Km_13BPG_rl14 =3.12;
Km_NADH. r14 =224,
K_Fr16 =241;
Km_13BPG._r16 =4.62;
Km_ADP_rl6 =8.79;
K_Rrl16 =0.58;
Km._3PG_rl6 =0.76;
Km_ATP_r16 =331;
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K_Fr17 =0.16;
Km_3PG._r17 =046;
K_Rrl17 =1.79;
Km._2PG._r17 =1.06;
K_Fri18 =4.25;

K_Rr18 =7.36;
Km_2PG_r18 =6.70;
Km_PEP_r18 =7.77;
K. r19 =3.62;
Km_PEP_r19 =2.55;
Km_ADP.r19 =4.01;
K_Frel4 =441;
K_Rrel4 =231,
Km_F16BP_rel4 =8.09;
Km_DHAP._rel4 =5.30;
Km_G3P_reld =2.64;
K _Frel7 =7.62;
Km._Pyr_rel7 =0.08;
Km_NADH_rel7 =0.17;
Km_TLac_rel7 =0.83;
Km._NADp.rel7 =5.68;
K_Rrel7 =0.92;

K. _rel8 =0.02;
Km._G6P._rel8 =0.89;
K_rel9 =146 x 10
K._re20 =0.49;

K_re2]1 =5.63;
Km._Pyr_mit_re21 =6.11;
K. _re22 =2.09;
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