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Abstract
Research into identifying people according to how they use mouse-like input
devices, has so far only weakly explored presumptions of the methods used—
for example environmental influences or influences of the source of original data.
According to the author’s knowledge, nowork has yet tried to reproduce or enhance
some predecessor’s work. The results of existing works are promising, but only
loosely connected.
In order to improve the above-mentioned situation, this doctoral thesis reviews
existing works in the field, provides theoretical foundations to better understand
and further evolve this identification method, and also explores modifications in
feature selection algorithm.
Based on this theoretical summary, the experimental part of this dissertation fo-
cuses on improving feature selection and on comparing three different user envi-
ronments and their data. It also enhanced selected former research on the use of
unrestricted movements. Experiments designed by the author are carried out and
their results are discussed for each mentioned experimental part.
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GLOSSARY AND ABBREVIATIONS
entity model of a person, set of features, template when in database
feature a random variable derived frommarkers of sample that characterizes

a person
gap or time gap, the duration with no movement that delimits the stroke

during stroke detection
input data the stream of measurements
marker the statistical property of a stroke, markers of sample are distilled

into featureswhen an entity is built, or matchedwith feature resulting
in similarity when an entity is identified

measurement
the raw value that samples a person’s movement in a single instant

movement mostly intentional action of moving mouse-like device by a person
person the subject that is identified, that performs movements
sample one or more consecutive strokes
similarity the measure of correspondence between markers of sample and fea-

tures of entity
stroke a piece of cleaned and adjusted input data that models and corre-

sponds to a single movement
template the database record storing data of single entity

API Application Program Interface (client interface of the OS)
EER Equal Error Rate, see chapter 5.2.4
FMR False Match Rate, see chapter 5.2.2
FNMR False Non-Match Rate, see chapter 5.2.1
GUI Graphic User Interface
HID Human Interface Device
OS Operating System
PIN Personal Identification Number
SFS Sequential Forward Selection, see chapter 5.3.2
SFFS Sequential Floating Forward Selection, see chapter 5.3.2
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1 INTRODUCTION
Measuring characteristics and properties of humans in order to distinguish one
human from another human was first widely used by governments in the field of
criminology. Governments tried to simplify and improve proof of guilt by linking
certain measured properties to a particular person. In today’s words, governments
identified people using their biometric characteristics.
Biometric identification is fundamentally different from other identification meth-
ods. The key needed for identification is always at the right place, as the person
themselves is the key. No cards, no chips, and no passwords are needed. Moreover,
thanks to the key-person relationship being unbreakable by nature, the biometric
identity practically cannot be stolen [2].
With current knowledge, it is still challenging to reliably detect differences be-
tween individuals using biometric identification. There are many factors that
make biometric identification difficult—for instance, the time of measuring, how
comparable results are, how unique properties are, the measuring precision, the
variability of properties, or simply understanding the selected properties [1]. For
all these reasons, all known methods are constantly evaluated and improved in the
hope that better performance can be achieved.
The same motivation propels this dissertation. This dissertation targets biometric
identification using computer mice because this method has been researched for
more than ten years and results are still far from perfect. Searching for, investi-
gating and evaluating some of these sources of imperfections is the main impulse
behind the dissertation.
There are three principal areas of mouse-like device identification, which are not
yet sufficiently covered by research, [3]: how much can results be reproduced
(how the same person is recognized using different mice and computers), how
should technical aspects of mouse movements be understood—which algorithm
to use? how to tune the system? what is principal and common? what is needless
and particular?, and the relationship between identifying features and existing
neurological models of eye-hand coordination—is there any way to discover this?
This dissertation primarily addresses the second area and partly the first area. In
addition, the dissertation takes one former research, [4], enhances it and evaluates
how much results are reproduced.
This dissertation is divided into three areas. Firstly, the current state of the art is
described which includes brief notes about the origins and progress in the field.
In the second part, basic theoretical terms and principles are explained, and lastly,
experiments are described along with their arrangement, results, evaluation and
a discussion.
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2 STATE OF THE ART
Research into identifying people according to how they use mouse-like input
devices has occurred in four stages over time:
The initial stage
The first, initial stage of research focused on testing whether information can
generally be used that was gained from tracking mouse-like device movements.
For example, [5] analyzed mouse movement dynamics in relation to Fitt’s law [6],
and [7] was thinking about measuring forces applied to mouse-like device during
the movements.
This initial stage of exploration in this field is particularly important for my
dissertation because these initial ideas were free—not intellectually restricted to
any procedure or previous work.
The exploration stage
The second, exploration stage tried to find various ways of organizing mouse-like
device input data into suitable identification features. Geometric models tracking
positions on the screen were invented by [8] and [9], dynamics models measuring
movement paths appeared in [10] and [4] together with motivation games. [11]
and [12] used no motivation games because they tested unrestricted input data.
Different approaches to classification of the entities were tested. [4] used statistical
models, [8] and [12] utilized a neural network, [13] explored decision trees. [14]
and [11] started with classifying mouse actions into groups.
In this stage it is typical to have a gradual increase in the complexity of usedmodels
and a straightforward effort to obtain quality identification systems at the cost of
reproducing results and a thorough understanding of the methods. Several groups
of authors published papers containing improvements of the same work, like [10]
and [4] or [8] and [15]. This dissertation benefits from such papers, because they
clearly show what helped improve methods.
Papers published during this stage form the basis for these dissertation experiments.
This dissertation will especially analyze and improve the stroke-based model
introduced in [10], improved in [4] and re-introduced in [12]. This model was also
analyzed and partially enhanced with unrestricted movements in [16].
An interesting comparison of different approaches is given in [15]: the author
used a geometrical model and tried to compare results with [4], where a dynamic
stroke model was used. Differences in the methods’ performance were not fully
explained in the work.
The separate branch of experiments evaluating a specially developed hardware
appeared, like in [11], where a mouse with embedded fingerprint sensor was used.
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Stabilizing stage
The third, stabilizing stage focused on cleaning and improving results achieved in
the two previous phases. Various approaches appeared and the validity of features
was first discussed.
For instance, [17] and [18] developed a survey of existing methods, [19] tested
whether measured features improve using the K-nearest neighbor classifier.
A new approach to the research appeared in this stage—software models started
to be constructed that should have helped understanding the mouse driven identifi-
cation, for instance in [20].
Effort to find out the best identification features continued, usually based on
statistical evaluation of identification templates, as in [21].
This dissertation refers to all the papers mentioned in this stage because the papers
reveal that some types of features are more prominent than others.
The evaluation stage (currently)
Current stage. Existing approaches started to be critically reviewed, and enhanced
variants of earlier works appeared. For example [22] tested yet another environ-
ment with restricted movements, [23] measured distances of templates with the
help of Euclidean metric, [24] reevaluated [12] approach and extended it with
random forest classification.
The further research into classifiers was presented in [25], and new classification
methods were utilized, like learning vector quantization in [26].
A systematic efforts to reduce complexity of existing systems appeared. [27] rec-
ommended that only movements ended with click should be used, [28] suggested
that the usage of mouse movements related to the file operations could lead to bet-
ter results, and [29] developed an approach where only predefined mouse gestures
are taken into account.
Papers attempting to critically identify systematic and methodological issues of all
previous works started to appear, like [3].
This dissertation also has the intention to search for methodological correctness
which is followed by using two possible sources of mouse information in three
types of environments. These are compared and evaluated with the goal of explor-
ing how they affect identification process.
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3 DISSERTATION GOALS AND BENEFITS
This dissertation has the following preparation and study goals:
• to critically review previous research,
• to explore technical and behavioral variants of methods used.
This dissertation has the following practical goals:
• to deeply analyze and enhance feature selection methods and metrics,
• to enhance [4] for unrestricted movements,
• to compare two methods of obtaining mouse-like device data, and
• to explore the influences of various user environments.
When the goals of this dissertation are fulfilled, this will have the benefits:
• various features of mouse-like device movements will be evaluated according
to how important they are,

• knowledge will be gained about interchanging and reusing of identification
templates in different environments,

• the feature selection process will be generally improved.
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THEORETICAL PART
The theoretical part is divided into three sections: the first part focuses on com-
mon terms and knowledge, the second part focuses on introduction to biometric
identification, and the third part focuses on explaining and discussing theoretical
fundamentals of mouse-like device identification methods.



21

4 PRINCIPLES, TERMS AND MATH USED
In this chapter, principal terms of identification will be briefly described and
explained. The explanation starts with identification term itself, it continues with
ideas about key/token—person relationship, then it discusses motivation and the
meaning of the term biometric [30] and finally it ends with the specialized term
behaviometrics.
In the second part of this chapter, an overview is given on the mathematical
apparatus used in this dissertation, and particularly on the usage of the law of total
probability and utilized random variables.

4.1 Identification
Identification of a person generally means looking for a person among an existing
set of persons. If a particular person is missing in the set, identification should fail.
If the particular person searched for is part of the set, identification should find the
correct record. Use of the verb form should is fully intended: no identification is
capable of being certain. Some uncertainty still remains simply because everything
in the identification process is of probabilistic nature [2].
The key means allowing comparison and assessment of methods is the amount
of uncertainty manifested by various methods. Methods having little uncertainty
are considered to be high quality. The uncertainty in identification results is fairly
complex, and there are standard ways of measuring uncertainty that are described
in chapter 5.2.
Looking for a person’s identity in the given set can be reduced to an abstract
process (see also [1]): the identified person becomes the key, the given set becomes
a database containing templates, and the matching phase searching for the key
among templates in the database becomes an algorithm. These four terms are used
throughout the whole text with these meanings.
The key can be anything suitable to prove a person’s identity in order that it is
believed that the key belongs to the person. It is crucial to believe in the validity
of this person-key bond in order to validate the whole identification process.

4.1.1 Detached keys—tokens
If the key is detached from the person, the identity is then reduced to the key
and the quality of identification is reduced to the quality of the key. The key is
usually wrapped in some physical carrier called a token. Many different detached
keys/tokens are used nowadays, for instance citizen identification cards, passports,
chip-on cards (badges) and so on. Detached keys make it easy for the algorithm
and database: the key is always constructed in a way that it allows algorithms to
match with the database exactly, with no uncertainty.
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There is a fundamental problem with detached keys/tokens. Because they are
detached, they can certainly be used by improper people; this act is better known
as identity theft. The possibility to steal tokens causes serious problems for identifi-
cation, which is why tokens are frequently supplied with independent second-level
sub-key(s) like a photograph of the owner, a PIN for cards, or a signature. The
need for sub-key(s) is so strong that effectively only when the key and sub-key(s)
are combined together it can be considered to be a complete key [2].

4.1.2 Biometric identification
If the key is attached to the person, the situation changes. There are different levels
of attachment ranging from bangles for home prisoners, sub-tissue electronic de-
vices and through to the person themselves being the key. When people themselves
are the key, it is the most interesting. This part of identification making use of the
fact that the person is exactly the key is called biometric identification. Having
the key and the person as one entity is the fundamental advantage of biometric
identification compared to identification using detached keys.
Using the whole person as the key offers a broader range of measurable and com-
parable characteristics. No abstraction is necessary, though reduction is still used
to decrease computational complexity. The broad range of human characteris-
tics has given rise to a broad range of biometric identification methods including
fingerprinting and tracking a persons’ daily movements/routines [30].
Biometric identification is never exact, which is directly contrary to detached key
identification. There are uncertainties relating to the key (i.e. how precisely
a person’s characteristics are measured and how stable they are) and uncertainties
related to the algorithm (the key can only match with the template approximately).
As a result, biometric identification is able to identify a person only at some level
of probability [2].

4.1.3 Behaviometrics
Biometric identification uses various personal characteristics. The presumption is
that the personal characteristics used do not change over time [2]. However, be-
cause humans grow and age, this presumption is in principle invalid, and whenever
possible, it should be replaced with a time interval when the particular characteris-
tics are reasonably stable.
According to the nature of measured characteristics, two groups of biometric
identification methods can be distinguished: the first group uses physiological
characteristics and the second uses behavioral characteristics. The latter group
using behavioral characteristics is also called behaviometrics.
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Physiological characteristics are rather static and usually show dimension, space
arrangement, chemical structure and so on. To the contrary, behavioral characteris-
tics are rather dynamic and usually show change over time, applying of forces, or
time arrangement. Obtaining physiological characteristics usually requires contact
with the person and it can be obtrusive, but this contact and measuring usually
gives repeatable and trustworthy values. Measuring behavioral characteristics, on
the other hand, can be done remotely and thus almost unobtrusively, but the values
read are more uncertain and noisy.
Behaviometrics also raises concerns about privacy, as characteristics can be mea-
sured without the person knowing it [30].

4.2 Probability distributions
This dissertation uses a probabilistic model of the identification. The principle
and also the details are described later in chapter 6.4. Probability distributions and
random variables play a central role in the identification system designed this way.

4.2.1 Distributions used in this dissertation
Two intentions have led to selecting which probability distributions to use:
• domain and variable type, where symmetrical unbounded distributions with
real number domain are needed, as well as bounded exponential-like variables
with their domain limited to positive numbers,

• simplicity and speed of estimating parameters of the distribution, only distri-
butions with non-iterative estimators were chosen (more about estimates is
written in chapter 4.2.2).

An overview of all used distributions is given in table 1. This table contains only
a basic description; comprehensive information can be found, for instance, in [31].
Described probability density functions (pdf) do not directly allow computing
probability of appearing a given value x. The probability can only be taken as
an integral of near neighbourhood of x. To achieve this, Simpson’s rule is used
as a numerical integration method in this dissertation. The rule runs in ten steps
over the interval

[
x − 0.5

100σ, x + 0.5
100σ

]
, where deviationσ is taken from feature (see

chapter 9.3.2) and is learnt during training phase (see chapter 9).

4.2.2 Procedures for estimating parameters
Estimating parameters of probability distribution for given data can be done in
many ways. Of these methods, let’s remember the maximum likelihood estimators,
and the momentum methods, [31]. Deriving these methods is beyond the scope
of this dissertation, so only the methods’ results will be described. For all used
distributions, methods with low computational complexity were always selected
(see chapter 4.2.1).
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Table 1 Random variables overview

distribution parameters pdf domain

Gaussian µ, σ

1
σ
√

2π
e−

1
2( x−µ

σ )2

R

logistic µ, σ

e−
x−µ
σ

σ
(
1 + e−

x−µ
σ

)2 R

Rayleigh σ

x
σ2 e−

1
2( x

σ)2

R+ + {0}

lognormal µ, σ

1
xσ
√

2π
e−

1
2

( lnx−µ
σ

)2

R+

inverse Gaussian µ, λ

√
λ

2πx3 e−
λ
2x

( x−µ
µ

)2

R+

Weibull α, β
α

β

(
x
β

)α−1

e
( x
β

)α
R+ + {0}

gamma α, θ

1
Γ(α)θα

xα−1e−
x
θ

R+

At the beginning of work on this dissertation, it was uncertain which distributions
to use and how their parameters could be estimated. For fast and parallel evalua-
tion of many distributions, the EasyFit tool [32] was used. After realizing which
probability distributions are useful, they were incorporated into the dissertation
software. EasyFit was then used to validate the implemented code—this disser-
tation and EasyFit are both expected to produce, and indeed produce, the same
estimates of parameters.
In equations that describe ways of estimating parameters, common quantities are
used—sample mean (1), sample variance (2) and sample mean of squares (3):
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µ̂ =
1
n

n∑
i=1

xi (1)

σ̂2 =
1
n

n∑
i=1

(xi − µ̂)2 (2)

m̂2 =
1
n

n∑
i=1

x2
i (3)

The estimation procedures are as follows:
Gaussian distribution parameters µ andσ directly correspond to samplemean and
variance. Simultaneously these estimators are maximum likelihood estimators:

µ ≈ µ̂ σ2 ≈ σ̂2

Logistic distribution is similar to Gaussian distribution with an exception in
logistic’s σ :

µ ≈ µ̂ σ2 ≈
3
π2 σ̂

2

Rayleigh distribution is different. If the sample mean is taken as the distribution
mean, the σ parameter can be computed:

σ =

√
2
π
µ ≈

√
2
π
µ̂

Lognormal distribution is very similar to Gaussian distribution except that values
are in logarithm form. Estimators are also maximum likelihood estimators:

µ ≈ µ̂(ln xi) σ2 ≈ σ̂(ln xi)2

Inverse Gaussian distribution uses the momentum method taken from [33]. The
estimation of µ is maximum likelihood estimation:

µ ≈ µ̂ λ ≈
µ̂3

m̂2 − µ̂2

Weibull distribution’s parameters cannot be correctly estimated without iteration
(for instance look at maximum likelihood estimations of Weibull in [31]). The
approximations used in this dissertation utilize quartiles and come from [34]; q1 is
the first quartile, q2 is the second quartile (median) and q3 is the third quartile:

c = ln
ln 0.25
ln 0.75

α ≈
c

ln q3 − ln q1
β ≈ q2(ln 2)−

1
α
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Gamma distribution’s parameters estimation method is taken from [35]. The
method is also approximate:

α ≈
µ̂2

σ̂2 θ ≈
σ̂2

µ̂

The input data for estimation procedures was prepared in two ways: first, his-
tograms were constructed and used, then whole data sets were processed. The
first approach was convenient for comparing results to the EasyFit [32] tool men-
tioned above because the tool creates histograms prior to estimating the parameters.
The second approach then replaced the histogram approach in the dissertation’s
software because constructing histograms is unnecessary.

4.3 Bayesian matching
The probabilistic model of the identification system developed for the purpose of
this dissertation (see chapter 7.2) uses the Bayesian law of total probability. The
law allows to guess which entity a sample belongs to.
Features trained using person’s data, and represented with the random variables
(for practice see chapter 9.3), are priors. Applying the single stroke of a sample
to priors gives rise to the number of probabilities, each expressing a probability of
belonging of one stroke’s marker to a corresponding feature. This is described in
chapter 4.3.1.
Once priors are used and prior probabilities are computed, posterior probability
can be computed using the law of total probability. This shows how closely
a particular entity belongs to the given sample. These computations are described
in chapter 4.3.2.
The whole procedure was inspired by [4], though the concept is general.

4.3.1 Priors
Matching a stroke of an unknown sample with a known entity composed of
features means computing probabilities, because features are represented with
random variables. The stroke is represented with markers, which must be matched
one-to-one with the corresponding features:
• matching of each marker results in single probability that the marker is of the
corresponding feature,

• when all these single probabilities are combined, this results in the probability
that the stroke is of the corresponding entity.

Expressed mathematically, the probability computed using the prior is a prior
probability:
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~s = (w0, . . .,wn−1) (4)

ε(we
i ) =

[
wi −

0.5
100

σe
i ,wi +

0.5
100

σe
i

]
(5)

p
(
wi|Fe

i
)

=

∫
ε(we

i )

De
i (6)

where (4) represents a stroke composed of markerswi and n is a number of features
Fe

i (corresponding to the number of markers) in tested entity Ee (e indexes entities).
Prior probability for a single feature (6) is computed directly using corresponding
random variable’s density function (pdf) De

i . (5) is a neighborhood used for
computing the integral of the De

i .
The concept was used and discussed in [4], where it was also shown, that individual
features are close to statistical independence. This means that prior probability of
the stroke can be obtained as a product of probabilities of individual markers:

p
(
~s |Ee) =

n−1∏
i=0

p
(
wi|Fe

i
)

(7)

The described approach can be extended for sequences and/or sets of strokes.
Single stroke represents a person worse than a sample containing more strokes.
Using complete sample (meaning using more strokes if they are available) is
obviously beneficial.
Similar equations as for single stroke can be written for whole sample, when
similar statistical independence is assumed. This independence is clear here
because a stroke (single-intention user action) does not rely on previous strokes:

S = (~s0, . . ., ~sm−1) (8)

p (S|Ee) =

m−1∏
j=0

p
(
~s j|Ee

)
=

= pe (9)

where m is a number of strokes in the sample S. It is evident that (9), product of
matching of individual strokes ~s j of the sample S with the entity Ee, uses (7).
(9) is the final result of matching of an unknown sample S with a particular entity
Ee. It is the prior probability pe that S belongs to Ee.
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4.3.2 Posteriors
Computing prior probabilities for all of t entities Ee produces t prior probabilities
pe. Each pe measures how tightly S belongs to Ee see (9).
The primary goal of identification is to determine the opposite relationship: if
Ee belongs to S; if S was produced by Ee. To compute this, the law of total
probability can be used. The result is hereinafter called similarity se of Ee to S :

se = p(Ee|S) =
p(S|Ee)p(Ee)

t∑
f =1

p(S|E f )p(E f )
(10)

In (10), p(Ee) and p(E f ) is unknown. It depends on a real identification system
and on its purpose, which values these probabilities have (i.e. how frequently each
person appears). In large systems with many entities (persons) p(Ee) and p(E f )
will be getting close to 1/t (where t is the number of entities):

p(Ee) = p(E f ) ≈
1
t

(11)

For the purpose of this dissertation (11) can be presumed because all experiments
test all entities equally. With the help of (11), (10) reduces to:

se = p(Ee|S) =
p(S|Ee)

t∑
f =1

p(S|E f )
(12)

The similarity se (12), the probability that the unknown sample S is produced by
known entity Ee, is the principal result used in this dissertation. se is used to
compute the EER (see chapter 5.2.4), it is used in feature selection process (see
chapter 5.3), and also in all experiments.
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5 BIOMETRIC IDENTIFICATION SYSTEM
All systems operating data for many entities must in principle perform very sim-
ilar tasks. The same is true for identification system, whose purpose basically
predestines its structure.
This chapter is dedicated to this common structure and also to the particular
tailoring used in this dissertation.

5.1 General model
When considering biometric identification, some facts emerge immediately:
• biometric→ measuring→ repeating, statistics,
• measuring→ raw data→ cleaned data→ filtering→ reduced data,
• data→ representation, storage→ storing, recalling,
• representation→ selecting, looking for, matching→ acceptance→ threshold,
• acceptance or rejection→ quality, reliability→ quality metrics.
These thoughts have appeared in identification systems, in various forms, from the
very beginning. It was soon possible to accept these thoughts as general ideas and
use them to start to organize abstract models.

5.1.1 Structure of the general model
The generalized model of biometric identification system firstly appeared in [36]
and later e.g. in [1], see figure 1. This generalized mode recognizes the following
subsystems:
data collection subsystem (DCS)
responsible for detecting presented biometrics (behavior) and converting this
to computer-acceptable samples,

transmission subsystem (TS)
transferring samples from the source to signal processing subsystem,

signal processing subsystem (SPS)
responsible for cleaning data, feature extraction, selection and matching,

storage subsystem (SS)
storing various data, for instance templates representing entities,

decision subsystem (DS)
taking results from SPS, and deciding if sample is genuine or an impostor.

DCS and TS delivers data to three other subsystems, which then cooperate. There
are two main types of cooperation between signal processing, storage and decision
subsystems—the training and tuning mode, and the operation mode.
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Figure 1 A generic biometric system—exact reprint from [1]

From the point of view of designing an identification system, decision and signal
processing subsystems are the most interesting. Decision subsystem is responsible
for training and also measuring the quality of the training. The SPS is responsible
for extracting and selecting features and for giving the DS enough data.

5.1.2 Modes of operation
Operation mode
During operation, the interaction flow is simple: SPS prepares a sample to evaluate,
matches it with templates from SS and passes this matching result to DS. DS then
decides whether to accept or reject the resulting match.
Training and tuning mode
During training, decision subsystem is given a new part called tuner which is
responsible for training. The tuner controls the whole training and tuning process
(the tuner is missing in the original figure 1).
The tuner adjusts SPS parameters and asks it to repeatedly extract and select
features. The features’ quality is then evaluated using templates stored in DS.
The entire process repeats many times until the system shows the desired level of
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operational quality. It is typical at this tuning phase (see chapter 5.3) to change
the SPS parameters and store and/or adjust the newly acquired templates.
The general biometric identification systemmodel according to [36] also inherently
contains primary metrics (needed by the DS) describing its operational state and
quality—they are the FMR and the FNMR.
In order to have a better insight into these quality metrics and into general problems
of feature selection (needed by the SPS) used in this dissertation, the chapters 5.2
and 5.3 are presented.

5.2 Quality metrics
It is important to thoroughlymeasure the quality of biometric identification systems
and methods at least for the following reasons:
• All these methods use probability and are inexact.
• Being aware of exactly how much various methods can fail is the key to
deciding how suitable each particular method is.

• Expressing the quality of results in standardized way allows comparison of
quality among methods.

A good overview of quality and performance metrics of biometric methods is
given in [37], it describes the FNMR, the FMR, the EER, the ROC or the FTA.
The FAR and the FRR are, for instance, mentioned in [38].
Metrics can be classified by their nature to rates, curves and points :
Rate metric
is a function that samples output of the identification system for more inputs
with respect to the value of some driving parameter χ. Rate metric is usually
expressed by a graph or with an equation to compute a single point of the
metric. Examples of rate metrics are the FNMR or the FMR.

Curve metric
is a function of themutual relationship between some ratemetrics. The function
is usually presented as a graph. Example of curve metric is the ROC.

Point metric
is a valuewith some special meaning, usually the point is taken from ratemetric
or curve metric. Examples of point metrics are the EER or the FNMR100.
Some point metrics also denote operating points of the identification system.

5.2.1 FNMR
The FNMR is rate metric [37]. The exact meaning of the abbreviation is the False
Non-Match Rate. The parameter χ driving the metric is similarity s (12). The
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FNMRmetric tracks results of identifying genuine samples that have a correspond-
ing entity in the identification system. An ideal identification system would assign
all genuine samples to a corresponding entity with 100-% probability, and the
sample and the entity would be 100-% similar.
In real identification systems each sample, as well as the entity’s features, contains
imperfections, so the identification system always succeeds by recognizing sam-
ples only to some certain extent. Many genuine samples have their similarity close
to 100% (but not equal to 100%) and some genuine samples have their similarity
far from 100%. The latter samples are recognized incorrectly by the system and
are given a false non-match.
Incorporating s to count falsely unmatched samples results in the false non-match
rate function. This function expresses how many similarities of genuine samples
Ng lie below given s, in the area of unrecognized samples:

Ng(s) =
∣∣∣gi ∈ G; ξ(gi) < s

∣∣∣ FNMR(s) =
Ng(s)∣∣∣G∣∣∣ (13)

where G is set on all genuine samples and ξ is a function of the identifying system
returning similarity of a given sample, [37]. Codomain of the FNMR defined in
this way is [0, 1]. An example of the FNMR is given in figure 2 and distribution
Ng(s) for the same FNMR is displayed in figure 3.
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FMR(s) 
FNMR(s) 

Figure 2 The False Non-Match Rate and the False Match Rate, an example

1 − FNMR(s) is a measure of accepting a genuine sample. For the given s it tells
us how many genuine samples are properly accepted.
The FNMR is frequently used to require the behavior of identification systems.
The FNMR is specified first and then the corresponding s is computed and taken
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as the threshold for deciding about a match. Point metrics FNMR10, FNMR100,
FNMR1000 and FNMR0 are used to specify that systems should operate at points
where FNMR(s) = 0.1, 0.01, 0.001 and 0.0. The last point is nearly inaccessible
in real systems, so it is rather used as a theoretical concept: s of FNMR0 is the
threshold above which all genuine samples are correctly accepted.
Setting theFNMR(s) close to 0 increases the tolerance of the identification system—
less entities are rejected. Relation to security for the FNMR is weak because
the FNMR describes rejection of known, correct samples; and rejecting genuine
sample is not a security issue.

5.2.2 FMR
The FMR is rate metric [37]. The exact meaning of the abbreviation is the False
Match Rate. The parameter χ driving the metric is similarity s, (12), which is the
same as for the FNMR in chapter 5.2.1. The FMR metric tracks results of identify-
ing of impostor samples that have not a corresponding entity in the identification
system. The ideal identification system would not match any impostor sample to
any entity with 100-% probability, and the sample would be completely unlike all
other entities.
In real identification systems each sample, as well as the entity’s features, con-
tains imperfections, so the identification system always succeeds with recognizing
impostor samples only to some certain extent. Many impostor samples have simi-
larity close to 0% and some impostor samples have greater similarity which may
even be close to 100%. The latter samples are recognized incorrectly by the
system and are given a false match.
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Figure 3 Distributions Ni(s) and Ng(s) of the FMR and the FNMR, an example
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Incorporating s to count falsely matched samples results in the false match rate
function. The function expresses how many similarities of impostor samples Ni
lie above the given s, in the area of recognized samples:

Ni(s) =
∣∣∣ii ∈ I; ξ(ii) > s

∣∣∣ FMR(s) =
Ni(s)∣∣∣I∣∣∣ (14)

where I is set of all impostor samples and ξ is a function of the identification
system returning similarity of the given sample, [37]. Codomain of FMR defined
in this way is [0, 1]. An example of an FMR is given in figure 2, distribution Ni(s)
for the same FMR is displayed in figure 3.
1 − FMR(s) is a measure of rejecting an impostor sample. For the given s it tells
us how many impostor samples are properly rejected.
The FMR is frequently used to require the behavior of identification systems.
The FMR is specified first and then the corresponding s is computed and taken
as the threshold for deciding about a match. Point metrics FMR10, FMR100,
FMR1000 and FMR0 are used to specify that the system should operate at a point
where FMR(s) = 0.1, 0.01, 0.001 and 0.0. The FMR0 is nearly inaccessible in real
systems, so it is rather used as a theoretical concept: s of FMR0 is the threshold
below which all impostor samples do not match with any entity.
Setting the FMR(s) close to 0 increases the security of the identification system—
less entities are improperly matched. Relation to security for the FMR is strong
because it describes accepting the unknown, incorrect samples; and accepting of
impostor sample is definitely a security issue.

5.2.3 FAR, FRR
The FNMR and the FMR described in previous chapters evaluate the technical
ability of the matching algorithm to correctly link (or not to link) an entity to
a sample. This matching algorithm is a key part of each identification system, but
still it is only a part. Consequently the FNMR and the FMR measure only a part
of the system.
There are more possible uncertainties and failures in each identification system.
One example of this is the Failure ToAcquire the sample (the FTA)whichmeasures
situations like when sensors fail, or there is not enough data. These failures add
to the technical measures FMR and FNMR, and summed together it forms outer
rates describing how the system behaves as a whole.
These outer i.e. complete rates, are called the False Acceptance Rate (the FAR)
and the False Rejection Rate (the FRR). The FAR relates to the FMR and the FRR
relates to the FNMR.
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All settings and conclusions discussed in 5.2.1 and 5.2.2 are identically valid for
the FRR and the FAR, for instance, that a higher FAR means less security [30].
Because the FAR and the FRR look at the system from the outside, they are used
more frequently than the FMR and the FNMR. On the other hand, the FMR and
the FNMR are more appropriate for quality comparison, when the identification
algorithm itself is the subject of comparison.

5.2.4 EER and other operating points
The FNMR and the FMR are constructed using a priori information—during
construction it is known whether a sample is genuine or an impostor. Identification
systems in operation lack this information and must decide about a sample’s
genuineness only according to its similarity s. In order to make such decision the
similarity itself is not enough, a second number to be compared with is required.
This second number is an acceptance threshold T , and is always pre-selected as
a parameter of the system. Then both values s and T are compared to obtain
a decision. It is obvious that T is a special value of the similarity s.
Due to this, T has its corresponding FNMRT = FNMR(T ) and FMRT = FMR(T ).
Moving T on the scale of s changes both FNMRT and FMRT , but the effect on both
is different: a bigger T gives greater security (a lower FMR) and less tolerance (a
higher FNMR) and vice versa [38].
Choosing the right T is one of the most difficult tasks in order to tune up the
identification system. In principle there are two ways to set T up:
• the technical way whereby special points on the FNMR/FMR curve are chosen,
• the statistical way whereby special values of the FNMR/FMR are chosen.
In both cases, the FNMRor the FMRvalue is given, and T is computed accordingly.
The first way leads to metrics or operating points:
FNMR0
The FNMR0 is the point on the FNMR curve where it touches zero. The point
is usually inaccessible because the FNMR may touch the zero too close to
s = 0. In this case, the FMRwould be unacceptably high and the identification
system would identify many entities wrongly.

FMR0
The FMR0 is the point on the FMR curve where it touches zero. The point is
usually inaccessible because the FMRmay touch the zero too close to s = 1. In
this case, the FNMRwould be unacceptably high and the identification system
would not recognize many entities that it could recognize.

EER
The EER is the point on both the FMR and the FNMR curves where FMR(s) =
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FNMR(s) = Y . It is the intersection of the FMR and the FNMR. The EER as
the chosen operating point does not prefer any of detection errors: false match
of impostor sample or false non-match of genuine sample.
It depends on the particular paper or system, what EER exactly means: it may
either mean complete 2D point (s,Y) or any of s or Y .

The second approach leads to metrics or operating points:
FMR10, FMR100, FMR1000
These are points on the FMR curve, where FMR(s) is 0.1 (10 %, FMR10),
0.01 (1 %, FMR100) or 0.001 (0.1 %, FMR1000). The higher the number in
the point name, the closer s is to 1.

FNMR10, FNMR100, FNMR1000
These are points on the FNMR curve, where FNMR(s) is 0.1 (10 %, FNMR10),
0.01 (1 %, FNMR100) or 0.001 (0.1 %, FNMR1000). The higher the number
in the point name, the closer s is to 0.

In the real world, FNMR0 and FMR0 are only rarely used because they are usually
inaccessible (see chapters 5.2.1 and 5.2.2). Their s is usually too close to 0 (the
FNMR) or 1 (the FMR), and this worsens the counterpart (the FMR or the FNMR)
so that it is at unusable level.
Selecting the EER is a technical choice which does not presume any purpose.
Due to this, it is rarely chosen in deployed systems because in the real world the
purpose is the key factor. Instead, the EER is being frequently chosen in research
and development where fair nature of the EER makes the system function more
balanced. The EER is also the point which this dissertation uses in experiments.
The choice of FNMR10, FNMR100 or FNMR1000 is suitable for lookup systems,
where a limited number of known entities are searched for within a huge amount
of unknown entities. Typical applications are scanning for criminals in airports or
public places where a low FNMR rate assures a higher percentage of detections.
A simultaneous increase in the FMR is not a problem because identified persons
are later inspected by personnel who filter out false matches.
For security targeted systems, the FMR100 or the FMR1000 are points of choice
(FMR10 is too large). A lowFMRassures a lower number of entities are incorrectly
accepted. This behavior is expected in systems permitting entrance, or permitting
access to restricted areas or data and so on. Allowing unauthorized persons to
do functions requiring authorization is an unwanted situation. The FNMR, which
increases accordingly, causes more frequent rejections of known persons, but for
security systems, this is acceptable. Usually, these false non-matches are resolved
by a security officer or with specific adjustments in identification systems.
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5.2.5 Approaches to measure quality of identification
The Equal Error Rate—the generic metric
The ERR is defined as the point where the FMR(s) and the FNMR(s) equals.
In graphical representations it is the crossing point of both rates. Because the
FMR and the FNMR are almost always taken from measurements, no analytical
functions exist that would describe them. Therefore, an analytical solution is
typically impossible and computing the EER is almost always based on geometry.
Measuring (or simulating) results in pairs of points [s,FNMR(s)] and [s,FMR(s)]
composing polylines, i.e. paths of concatenated line segments. The EER then can
be determined as an intersection point of both the FNMR and FMR polylines.
Distance of the FNMR and the FMR—faster and more sensitive way
The generic EER is important, because it is used in all existing publication related
to biometric identification. In this dissertation, a novel approach is used, that has
been developed by the author and that is described in a separate publication [49].
The idea is straightforward: the EER’s y value is biggerwhenmore FNMRsamples
get low s (similarity) or when more FMR samples get high s. Consequently, if
overall s for the FNMR is higher, or if overall s for FMR is lower, the EER’s y
value is lower (i.e. better).
The s ofFNMR(s) gets its worst (i.e. lowest) value sl in FNMR0 (see chapter 5.2.4).
The s of FMR(s) gets its worst (i.e. highest) value sh in FMR0, (15). In the
words of probabilistic distribution, sl and sh are located in tails of corresponding
distributions. An example of the FNMR (Ng(s), (13)) and the FMR (Ni(s), (14))
distributions is shown in figure 3.

FNMR0 = FNMR(s; s ≤ sl) = 0

FMR0 = FMR(s; s ≥ sh) = 0 (15)

It is not known which random variable type corresponds to Ng(s) and Ni(s) in
general, and it is beyond the scope of this dissertation to explore it. In such case,
use of Gaussian distribution is the acceptable approximation [31].
Supposing Ng(s) (13) and Ni(s) (14) has Gaussian distribution, sl will be located
in the left tail of distribution Ng (16) and sh will be located in the right tail of
distribution Ni (17):

Ng(µg, σg) ≈ Ng(s) sl < µg (16)

Ni(µi, σi) ≈ Ni(s) sh > µi (17)

where µg, µi, σg and σi are estimated according to (1) and (2) from the groups of
genuine and impostor similarities.
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Means µg and µi represent Ng(s) and Ni(s) (and therefore the FNMR(s) and the
FMR(s)) enough, but utilizing deviations helps further. Deviations represents
spreads of values ranges and therefore incorporating deviations increases sensitiv-
ity to border values. The following tail points tg and ti represent this idea with
adding/subtracting deviations to/from corresponding means:

tg = µg − σg ti = µi + σi (18)

Tail points tg and ti are located on Ng and Ni similarly as the points sl and sh are
located in Ng(s) and Ni(s). The relationship is direct because tg and ti are derived
from approximations of Ng(s) and Ni(s). The idea is visible in figure 4, where
a second example of Ng(s) and Ni(s) is given: look at tg and ti drawn nearby their
Ng and Ni in gray.
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Figure 4 Ng(s) and Ni(s) distributions with
Gaussian approximations and tail points

Having both points tg and ti, a distance of the FNMR and the FMR is:

dEER = 1 − (tg − ti) = 1 + ti − tg ≈ EER (19)

This distance dEER is the new metric that can be used for evaluating the quality of
identification system.
The best value of this measure is dEER = 0 and this value corresponds to EER =
0. In this dissertation, dEER is used in the experimental part for selecting features
(see chapter 10.2.3).



39

5.3 Feature selection
Feature selection forms and important part of identification system in its design,
development and tuning phases. According to general model of biometric system
[36] (see chapter 5.1), the feature selection is used only in training and tuning
mode (see chapter 5.1.2) where it follows the feature extraction step.
According to [39], the purposes of feature selection are:
• the primary purpose is the selection of relevant and informative features,
• general data reduction and feature set reduction,
• performance improvement, and
• understanding data.
The first two points relate to selection itself : selection goes through an initial
amount of extracted features, not knowing which feature is relevant, nor how
many features to select, evaluates many variants using evaluation criterion and
finally outputs a set of selected features which fulfills the primary purpose.
The aim for feature selection in this dissertation is the same, i.e. to select relevant
and informative features. An auxiliary aim is also to understand data. However,
understanding data is of less importance because without selecting a feature no
data can be understood.
For this dissertation, it is enough to describe the main issues of feature selection,
including two applied algorithms. For thorough overview of the topic see [39].

5.3.1 General issues of feature selection
The main problems of feature selection are:
• computational complexity, because selecting the best set of features may re-
quire evaluating all combinations,

• hard predictability, helpful feature may be irrelevant by itself,
• definition of the evaluation criterion.
The second point is partially linked to the first one, as ability to predict usefulness
may decrease computational complexity. A hidden relevance of features is related
to the nesting effect [39] whereby bad decisions made at the beginning of the
selection cannot be corrected later. The experimental phase shows that features
extracted from experimental data manifest this nesting effect.
Tested algorithms, the Sequential Forward Selection and the Sequential Floating
Forward Selection, are described in chapter 5.3.2. The first algorithm suffers from
the nesting effect, the second one overcomes it.
Evaluating the performance of set of selected features may also help reduce com-
putational complexity, because better criteria can remove irrelevant features faster.
In this dissertation three criteria are used, all described in chapter 5.3.3.
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5.3.2 Selection algorithms, SFS and SFFS
As already mentioned in previous chapters, Sequential Forward Selection (SFS)
and Sequential Floating Forward Selection (SFFS), [39], were both tested and are
used in this dissertation. Both algorithms have in common:
• Forward selection—the algorithm starts with an empty set of features and then
fills the set. Opposite algorithms, the backward selection, shrinks the set.

• Sequential selection—the algorithm adds one feature in each step. Other
algorithms may select features arbitrarily, e.g. as stochastic algorithms select.

• Evaluation criterion—evaluation criterion is an objective function that is min-
imized or maximized by the selection algorithm. In this dissertation it means
a function combining similarities (posterior probabilities, see chapter 4.3.2)
into EER or its substitute (see chapter 5.2.5). Because the lower the EER the
better, the selection algorithm works as minimizer.

• Looking for the best match—for a given step and already built set of features,
both algorithms test all remaining features to decide which new feature to add.
The newly selected feature is the feature which improves evaluation criterion
the most when it is added to the set of already selected features.

Sequential Forward Selection, SFS, [39]
All four described common properties merged together almost completely form
the SFS. The only missing factor needed to know is when the SFS stops selecting.
These following criteria stop the algorithm:
1. achieving the required number of selected features,
this is fulfilled when there are enough items in the set of selected features.

2. when the EER, or its substitute, reaches the threshold,
e.g. when the EER decreases below 0.01%. It is the absolute criterion.

3. when the EER does not decrease during a certain number of steps,
e.g. when three consecutive steps do not improve EER by more than 0.001%.
It is the relative criterion using two parameters (number of steps and limit).

4. when there is nothing to add,
even if there are yet unselected features. It can happen when the evaluation
criterion is worse for any added feature that is not yet selected. SFS cannot
continue in this situation because it cannot improve the solution in any way.

Of the above criteria, only criteria 2, 3 and 4 were used in experiments in this
dissertation. The fourth criterion effectively never stopped searching because the
second and third criterion always had stopped searching earlier.
The SFS is a simple, fast and straightforward method. On the other hand, features
extracted from mouse-like devices data manifest a nesting effect, which is an
unsolvable problem for SFS.
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Sequential Floating Forward Selection, SFFS, [39]
SFFSmakes use of a backtracking step, which SFS does not have. Once a new best-
improving feature is added, the SFFS tries to remove features from the selected
set till the evaluation criterion improves. This removing phase is the advantage
that helps SFFS overcome the nesting effect. This relates to the word floating in
the algorithm name: a set of selected features floats, the size and the content of
the set is not fixed in any algorithm step.
After the backtracking step a new forward step follows. Because of this the
algorithm is liable to oscillations, when the same feature can be repeatedly added
and removed. Defense against oscillations is simple: SFFS keeps track of the best
result for each size of the set of selected features. It allows the SFFS to reject
additions or removals of features if the evaluation criterion for the new set size
would not change. As a beneficial side effect, maintaining performance results for
each feature set size also allows deciding about the best number of features.
Criteria to stop the searching are:
1. achieving the required number of selected features,
this is fulfilled when all variants are evaluated that have feature set size up to
the required number.

2. when the EER, or its substitute, reaches the threshold,
e.g. when the EER decreases below 0.01%. It is the absolute criterion.

3. there is nothing to add or remove,
either in the case of exhausting the available features or in cases when no
addition or removing improves the evaluation criterion.

In the experiments, criterion 3was never reached because searching always stopped
due to the first or second condition.
The SFFS is more complex and is slower than the SFS. However, experiments
showed (see chapter 10.2.1) that SFFS almost always found a better set of features.

5.3.3 Criterion functions
Criterion function drives feature selection algorithm in two ways:
• first, it simply compares which feature set gives better result,
• secondly, it can speed up selection if the criterion is more precise and stricter.
The first property is necessary, while the second property is just preferable.
In this dissertation, three variants of criterion function are explored: using only
single posterior probability, the geometric approach computing the EER using
the FMR and FNMR curves, and lastly the derived approach using the FMR and
FNMR distributions (see chapter 5.2.5).
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SPP, single posterior probability (12)
The measure of selection quality is similarity se, probability that an entity belongs
to a given sample. It is computed from prior probabilities, so all entities are taken
into account. To select the best set of features, (12) is expected to be as close to 1
as possible. SFS or SFFS using this criterion works as minimizer of 1− se because
se = 1 is the best and maximal value.
To be able to use (12) as an evaluation criterion, it must be related to the EER
(see chapter 5.2.5, part about relative EER comparison). The relationship is
straightforward: the bigger se is, the lower the number (1 − se) is that must be
divided into remaining entities. The remaining entity distribution is forced to be
close to 0, and the genuine distribution represented with single se is close to 1.
The discussion in chapter 10.2.3 of experimental part shows that this approach
works, but it gives results that are different from the other two methods. This
method though, is very fast.
EER/polylines, EER obtained geometrically from polylines
This criterion directly uses the EER, so there is no need to consider an equivalence
to it. The EER is computed as an intersection of two polylines, the FMR and the
FNMR (see figure 2). To find the intersection, all segments of one polyline must
be tested against all segments of the second polyline. The task is time consuming
because the time complexity of the algorithm is O(n2) [49].
Constructing FMR and mainly FNMR requires many points; in experiments at
least a number of entities is used. Each point on the FMR or FNMR requires
individual computing (12), which slows computing down.
SFS or SFFS works as minimizer of the y-coordinate of the EER in this case.
dEER, EER replaced with (19)
This approach is described in detail in chapter 5.2.5. In short, finding intersection
of polylines is slow and not very precise. dEER uses FMR and FNMR distribu-
tions (which are precursors for FMR and FNMR polylines) to produce equivalent
measure faster and simpler.
SFS or SFFS using this criterion works as minimizer of dEER because the best and
minimal value of the dEER is 0.
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6 MOUSE-LIKE DEVICE IN BIOMETRICS
Mouse-like devices look like they are able to generate enough data for identifica-
tion purposes. In order to discuss and hopefully prove this fact, principles and
properties of the method need to be explored, explained and linked to previously
described general terms.
In this chapter, principles and links to behaviometrics are firstly discussed. This is
followed by some questions, and also the pros and cons are summarized. Finally,
understanding the principles and problems, a four-layer model of mouse-like
device identification is introduced. The model adheres to the general model
described in chapter 5.1 and is structured according to the needs of this dissertation.

6.1 Principles
Moving and clicking mouse-like devices to operate the cursor in GUIs and/or
to press some GUI control requires precise arm action as well as tactile and
visual feedback. This complex interaction is fully controlled by the brain and its
regulation loops.
When the brain processes input information and sends messages for the arm to
move, at least the following factors are involved:
• The speed the brain can process images.
• The speed of transferring excitation along nerve fibres.
• The sensitivity of tactile sensors and the sensitivity of movement sensors in
muscles, tendons and cartilages.

• The parameters of the brain’s regulation loop: the speed, the smoothness of
the movement and the quality of the loop. The regulation loop is not inborn,
but develops during the first months of life.

• How sensitively the muscles react to stimulation.
• The speed at which muscles contract, and the amount muscles contract.
• The weight of all tissues in the arm.
• The geometry of the arm and distances regarding arm levers.
• The elasticity of tissues and the flexibility of the arm which limits movement.
• Trained movement patterns, e.g. how to move the arm by sight control. Some
people move mouse-like devices quickly and precisely, while others quickly
and imprecisely (then corrections are applied), and even others move mouse-
like devices slowly due to fear of making mistakes.

As can be seen, many factors are involved and each factor is highly individual. It
might be possible to measure factors one by one, but this is not easy. E.g., trained
patterns and parameters of the regulation loop are almost immeasurable because
they require studying the dynamics of the entire control loop and this is affected
by all the other parameters.
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In order to point a cursor using a mouse-like device, the entire arm is involved and
it is affected by all the above-mentioned factors. Therefore the movement and its
control is dynamic. This fact is a reason for classifying this method as behavioral
and/or behaviometrics.

6.2 Questions about the method
The parameters affecting mouse-like device movements were discussed in a pre-
vious section, as was the fact that all factors are individual. This is the principal
reason why the method can be used for identification purposes. However, many
questions about the method need to be addressed:
• Are the physiological factors that control movements unique enough?
• How quickly can a person be identified using mouse-like devices?
• What happens when there is a change in devices used, such as using a different
mouse or a different computer?

The answers to these questions are partially known because previous research has
shed some light in these fields of study. This dissertation touches on all three
points in the experimental part.

6.3 Pros and cons
Advantages of mouse-like device identification:
• Wide availability. Almost every PC today has a mouse-like device included.
• Fast data rate. Even after a short time working on a computer there are dozens
of clicks and hundreds of positions related to mouse-like device moves.

• Reuse of information. Identifying the movement of mouse-like devices can be
done without special equipment or special procedures bothering the user. It
uses side channel information from mouse-like device communication.

• Simplicity.
• Continuity. Identification takes place all the time.
Disadvantages of mouse-like device identification are:
• Not immediate. Obtaining and evaluating information takes some time.
• Possible reliance on hardware. Identification using various mouse-computer
pairs may not be possible using this method.

• Unknown robustness and reliability. Will the method work when a person
changes their individual factors either intentionally (in an attempt to hide their
identity), or unintentionally when tired, injured, or the like?

6.4 Four-layer model
All identification methods use different abstractions in their algorithms, andmouse-
like behaviometrics is no exception. For better insight, a general model has been
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outlined (see chapter 5.1), that has been fully applied in the four-layer model used
in this dissertation. An overview of this model is displayed in figure 5.

6.4.1 Implicit layer
The implicit layer essentially allows identification to work. This layer contains
the physiological and behavioral characteristics of the individual; these charac-
teristics cannot be expressed in numbers and they form the foundation of this
method. Mouse-like devices are moved by muscles. Feedback on the position and
movement is given by muscles and also by tactile and visual sensors. All factors
mentioned are highly individual. An overview of factors involved in moving
mouse-like devices is given in chapter 6.1.
All these physiological and behavioral characteristics manifest as a complete, com-
plex mixture. Detailed study from a physiological or psychological point of view
is beyond the scope of this dissertation. However, an overall view is useful because
it is primarily these characteristics that affect the identification:
• Knowledge of how the brain and body control mouse movements is important
in order to understand the dynamics. For example, if the brain controls position,
it makes sense to focus on positions, position corrections, or places of clicks;
if the brain controls acceleration, it makes sense to focus on acceleration.

• The sensitivity and quality of coordination affects small unintended moves and
how precise movements are. Therefore characteristics like the jitter, the fre-
quency and size of backward movements or time before clicking (stabilization,
settling time etc . . .) could be important.

• The speed of movements, coordination quality and general tendencies in move-
ments first affect factors of time. Then characteristics like the settling time,
times in multiple clicks or overall duration of an action may be significant.

Concerning this implicit layer, this dissertation uses all three groups of characteris-
tics mentioned above in the model layer (the layer extracting movement markers
and features, see chapter 6.4.3 below). Besides this, examining the features se-
lected for each individual person gives information about how mouse-like device
movements are controlled.
The layer corresponds to the data collection subsystem (DCS) of the general
biometric model (see chapter 5.1).

6.4.2 Input layer
Windows operating system uses single abstraction for all mouse-like devices. This
abstraction sends a continuous stream of measurements to API. These measure-
ments contain position information and button activity, for each activity it is
known which button is pressed and which are not.
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The operating system usually divides the layer for its own purposes. Available
data comes from the HID driver in raw form and the operating system modifies
this data by a procedure called the user experience filter. The experience filter
builds a modified stream of coordinates from the driver’s data with dynamics and
limits applied. A typical example of a user experience filter is the acceleration
parameter of Windows mouse settings.
Here lies a question: which data, raw or filtered, is more suitable?
• The driver’s data corresponds to real physical movements. This means that
detecting dynamic processes should be easier because no filtering is applied to
the data. On the other hand, the driver’s coordinates are not seen by the user,
so the brain’s feedback is taken from different values.
Let’s call this movement-measurement approach.

• Data that is filtered by the user experience filter corresponds to what the user
can see. It should mean that the brain controls the movement using these
filtered coordinates. On the other hand, the filter transforms the data, so the
original raw coordinates are lost and the algorithm can hardly detect if the user
or the filter is accelerating.
Let’s call this movement-eye approach.

One of the goals of this dissertation is to decide which coordinates identify better.
The layer corresponds partially to data collecting subsystem and fully corresponds
to transmission subsystem of the general biometric model (see chapter 5.1).

6.4.3 Model layer
In general, themodel layer compacts and converts the input layer data into template
data, it extracts markers and features that describes individuals. According to this,
the model layer contains everything related to the particular identifying algorithm
used and may vary heavily among various approaches.
Two groups of approaches exist in current research:
The time-geometric approach
This approach obtains input data, organizes it into geometric groups and then
evaluates various characteristics of these groups. The time factor can be
involved diversely, it can be used for example as grouping criteria, or as
a matter of analysis after groups are established.
This approach does not attempt to guess what the user does, but rather focuses
on coordinates and the relationship between time and position. Nothing more
is available in input data, so the approach can be viable [8].
This approach is not used in this dissertation.
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Figure 5 The four-layer model, a specialization of general model
(see chapter 5.1). Black boxes refer to the general model.

The user action approach
This approach attempts to construct more abstract activity units from the input
data. [4] for example calls these units strokes and this dissertation accepts this
name. Information is added to input data on the presumption that these units
used in particular GUI have a goal that the user wants to achieve. For each
particular stroke, various quantities are derived like the length, variance from
the middle path, curvature and so on, and then the corresponding markers are
computed as statistical properties of the values of these quantities.
The user action approach guesses what the user does. Guessing is implicitly
incorrect therefore this approach can be less precise. On the other hand, search-
ing for identical user action can considerably improve statistical processing
because more actions are available from which statistics are gathered.



48

The model layer computes either complete features or the computation ends
only with obtaining the markers. It depends on the current operation mode of
the identification system (see 5.1.2)—in the operationmode the final product of
the model layer is the markers, whereas in the training mode it is the features.
The data and action flow in the training mode is displayed in the figure 5
with hollow arrows—what is connected using hollow arrows only works in
the training mode.
The fact that the single intention to perform some action exists (i.e. moving the
mouse to a web link or clicking a button to open a document) is the principal
presumption that people can be identified using this user action approach.

Data processing in the model layer can be greatly adjusted and tweaked. However,
if this tweaking is not done carefully in respect to statistical rules, this processing
can bring artifacts which can manifest as noise, cross correlations and similar
problems. Preparing and extracting data in this manner is a large part of the
experimental part.
The layer corresponds to the signal processing subsystem of the general biometric
model (see chapter 5.1).

6.4.4 Template layer
Results from the model layer, that are various extracted markers and/or features,
can be directly used for matching by the algorithm or the database. Involving one
more template layer compared with using just markers and features directly brings
the following benefits:
• It separates outer usage from internals of the algorithm and the database. The
model layer can easily change its interface in this arrangement without disturb-
ing the clients who use it.

• It separates concerns. The model layer should apply the abstract model to
input characteristics in order to obtain simplified characteristics expressed
with markers and features; the model layer should create them. The template
layer should only use results from the model layer. It should read markers and
features, evaluate their matches and also select the best set of features during
the tuning phase, but not create them.

The template layer contains two parts: matching with decision making, and train-
ing. Both parts are thoroughly explored in the experimental part of this dissertation.
The template layer corresponds partially to the signal processing subsystem and
corresponds fully to the data storage and decision subsystems of the general
biometric model (see chapter 5.1).
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EXPERIMENTAL PART
The experimental part of this dissertation describes the process leading from
raw mouse data to evaluating the ability to decide which mouse data belongs
to whom. Because at the beginning of the process there is a mouse-like device
with its simple coordinates, everything is described and explained in bottom-to-up
manner—simple representations are built into more complex ones.
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7 ABOUT THE EXPERIMENTAL PART
The experimental part consists of experiments and description of research. Re-
search and experiments depend on each other, which is why descriptions of exper-
iments always contain the corresponding part of research and also a discussion
of results (or of a partial result). The top-level structure of the research and
experiments is given in chapter 7.1.
All experiments explore real data taken from real users. In order to grab this data
and in order to carry out all experiments in an intended way, a special software
suite has been developed for the purpose of this dissertation. The suite is briefly
described in chapter 7.2.

7.1 Top-level structure of the experimental part
The overall view of the experimental part is as follows (the whole experimental
part corresponds to the four-layer model displayed in figure 5):
• The first experimental environments and type of obtained data are described in
chapter 8. Here is a brief description of what is read from mouse-like devices.

• Mechanisms of cleaning and adjusting input data are then described in chapter 9,
together with an explanation of feature extraction that reduces the input data
to markers and features.

• Features are many and a procedure is needed to select only some of them.
The corresponding feature selection is described in chapter 10, together with
a discussion. The use of input data divided into training and tuning sets is also
described in this chapter.

• The final section of the experimental part contains various validations—
applying validation data sets to trained entities within a single environment
and/or source, and also cross-validations—applying validation data sets to
trained entities of different environments and/or sources.

7.2 The software developed for experiments
The software developed for the purpose of this dissertation consists of two parts,
the grabber and the identification system, both programmed by the autor:
• The grabber is a standalone application running in the background. It was
used on each computer where data for experiments was stored. The purpose
of the grabber is to load data simultaneously from all chosen data sources and
to store this data into a file.
Sample output of the grabber can be seen in listing 1, the line format is:
"trk/"<source>":" <dt> <flags> <dx>">"<x> <dy>">"<y> <wheel>
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where <source> is R for HID record, or H for API record (see chapter 8.2);
<flags> contains status of five mouse buttons; <dt>, <dx> and <dy> are
differences to previous record from the same source; <x> and <y> are current
absolute values and <wheel> contains a number of wheel ticks.
The grabber does not process data in any way leaving all processing to the iden-
tification system. Source codes for the grabber can be found on dissertation’s
CD in the folder <Software/Grabber>.

• The dissertation’s identification system, i.e. program, realizes all steps and
activities from the input data cleaning up to the comparison of environments
and data sources. The program reads the file prepared by the grabber and
calculates all information needed for this dissertation.
The program contains all algorithms described in the dissertation, namely:

— Catmull-Clark and spline smoothing,
— estimating random variables parameters and calculating prior probabilities,
— computing posterior probabilities using the law of total probability,
— calculating EER and dEER, SFS and SFFS,
— input data cleaning, the detection of strokes and the feature extraction,
— the feature selection and all experiments.
The program also contains all code necessary for dumping out results of
experiments. The format of all output data files is CSV.
Source codes for the identification system can be found on dissertation’s CD
in the folder <Software/IdentificationSystem>.

trk/R: 7.9648 ----- 3>669 0>167 0
trk/H: 8.0173 ----- 1>852 0>186 0
trk/R: 8.0389 ----- 1>670 0>167 0
trk/H: 8.08 ----- 1>853 0>186 0
trk/R: 8.101 ----- 2>672 0>167 0
trk/H: 7.9825 ----- 1>854 0>186 0
trk/R: 7.999 D---- 2>674 1>168 0
trk/H: 0.1892 D---- 0>854 0>186 0
trk/H: 7.8075 ----- 0>854 0>186 0
trk/R: 8.0076 ----- 0>674 1>169 0
trk/H: 8.0087 ----- 2>856 1>187 0

Listing 1 Example output of the program grabbing user input



53

8 ENVIRONMENT AND DATA
Experiments need well-described environments (the question is where?), a clear
procedure for obtaining data (the question is how?), and the specification of which
data will be obtained (the questions here is what?). All three of these factors are
discussed in the following three chapters.

8.1 The environment
Four types of environments are used:
Controlled environments E− and E+

These environments have the stable combination of a mouse, a real computer
(not a virtual computer machine) and user experience filter settings. The
settings of the user experience filter remain the same for all users.
To achieve identical conditions for each user, users were required to log in to
a new session at the start of each obtaining of data. The login process assured
that the same combination of processes still operated.
Users were instructed to do whatever activity requiring a mouse for at least
one hour. No activity was presumed and for users’ convenience Machinarium
[40] and Samorost games, Inkscape and OpenOffice Draw (both vector graphic
editors) were installed.

Varying individual environments Ee

These environments are varying, random environments of particular users.
These environments are not controlled in any way, no applications are pre-
sumed, nor pre-installed. All Ee differ from both E− and E+.
Users were given the same instructions as they were in the previous environ-
ments, to spend at least one hour doing mouse-requiring activities.

Synthetic environment E s

This environment is an artificial abstraction that encapsulates individual envi-
ronments Ee. The environment E s models possible future usage of the identifi-
cation systemwhen data for individual users are taken in various environments
and during many sessions.

Controlled environments E− and E+ are intended to obtain comparable data in
order to analyze how input layer variants depend on user and processing settings.
Varying environments Ee and synthetic environment E s, on the other hand, are
intended to produce data to analyze effects depending on changes in environments.
All environments use Microsoft Windows 7. Possible differences in identification
in other platforms were not explored.
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8.1.1 Environments E− and E+

Both controlled environments E− and E+ have pre-defined mouse settings. Basic
Windows control panel interface for adjusting mouse settings was used because
this is common in all computers.

Figure 6 Windows settings for mouse pointer movements

The OS allows the changing of two independent parameters [41] (see figure 6):
Pointer speed
Pointer speed is a factor to multiply tick counts from mouse device in order
to get a pixel count. This factor can be set in eleven degrees, where the sixth
degree has the value = 1.0 [42][43] whereby the device tick = pixel.

Precision enhancement
Precision enhancement is a non-linear transformation that slows down small
movements and speeds up long movements. Due to the fact that precision
enhancement changes speed, it is known as an acceleration curve. InWindows,
the acceleration curve is representedwith five points and values are interpolated
between these points.
Curve points are stored in the Windows registry and their settings is not
available to the user. A few tools exist that can read and/or change the curve,
e.g. CustomCurve [44].
Precision enhancement can only be switched on or turned off as a whole.

Environments E− and E+ have been pre-set to values displayed in table 2.

Table 2 Mouse settings in environments E− and E+

environment enhancement speed

E− off 6

E+ on 6

An overview of environments and data sets arrangements (about data sets see
chapter 8.3) is given in figure 7.
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8.2 Data sources, obtaining data and data format
Operating system in principle has three places from where applications can read
mouse data. The first place, the kernel mode device driver, is not used in this
dissertation. The second place is the public interface of kernel at the top of the
HID queue where the mouse data is presented in raw unprocessed form. The third
place is the application’s input queue where mouse data is filtered with the user
experience filter and completely prepared for use in an application.
The second and third input places are used in this dissertation, both these sources
are described in chapter 6.4.2 from a theoretical point of view. The data from these
sources is read using the grabber (see chapter 7.2), technically:
• Raw input data is read from the top of HID queue. The coordinates are relative,
and the grabber computes absolute ones. This data is further denoted as driver
data D, because it is read from the HID device driver’s output.

• The application’s queue contains data after the user experience filter is applied.
The coordinates are absolute and relative ones are computed. This data is
further denoted as A, because it is read through the operating system API.

Obtained positions are marked with timestamps which have microsecond resolu-
tion and these are written to the output file as individual lines. Each line in the
output file then corresponds to a single record representing a single mouse event.

8.3 Experimental data sets
From a statistical point of view, the more input data, the better. For the purposes
of this dissertation, complete data sets from 16 people were taken. In total, it
represents more than 100 hours of mouse movements and more than 1,500,000
tracked mouse events.
Data sets available from each person are:
D−e and A−e set
Data taken from the person e in environment E−, data set D−e contains data
from a driver source and data set A−e contains API data.

D+
e and A+

e set
Data taken from the person e in environment E+, data set D+

e contains data
from driver source and data set A+

e contains data from API.
De

e and Ae
e set

Data taken from the person e in environment Ee, data set De
e contains driver

data and data Ae
e contains API data.

Together, there are six independent data sets available per individual user, which
allows mutual comparison of data sets between users, between data sets and also
between environments.
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Figure 7 Overview of environments and their data sets

Arrangement of all data sets, together with their origin, is displayed in figure 7.
Note, that the synthetic environment E s (see page 53) is composed of all data sets
De

e and Ae
e, and that it has the same size as environments E− and E+.

8.4 Summary of environment and data
One of the goals of this dissertation is to analyze and compare various user
environments. In order to accomplish this goal, three different environment types
were prepared for involved users. The first and the second type of environments
was controlled with a pre-defined and stable combination of the mouse and the
computer, both these environments differed in the mouse settings. The third
environment type was the proper environment of each particular user. All these
proper environments were merged to a fourth mixed environment type in order to
imitate the real usage of the identification system.
Mouse-like device data can be read from the operating system using two methods:
from the HID queue and from the API. In order to compare which method is more
convenient, data sets for the experiments were taken from both these sources.
For the each involved user, six data sets were recorded. These six data sets are the
only input used in all experiments carried out in the experimental part.
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9 FEATURE EXTRACTION
Data sets taken by the grabber are discrete and raw, intentionally unprocessed. To
reduce them down to entities, three well-defined steps are carried out:
pre-processing
which is aimed at fixing irregularities (see chapter 9.1),

building of strokes and their markers
which divides input data stream into bundles of input events called strokes, and
computes markers as characteristics of the strokes (see chapter 9.2),

extracting of features
which creates high-level representation of input data based on randomvariables
(see chapter 9.3).

All three of these steps are described in the following chapters.
The feature extraction can run in the two modes according to the running mode
of the identification system (5.1.2). Both of these training and operational modes
share the pre-processing phase, the detection of strokes and the building of markers.
The training mode then continues with building features that finally form an entity.
The process and data flow in the training phase is displayed in figure 8.
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Figure 8 Data flow and data reduction steps in the training mode

The operational mode stops the feature extraction whenmarkers are built. Nothing
more is needed because markers are then only matched with entities, that are stored
in templates from the preceding training run. Data flow for the operational mode
is shown in figure 9.
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Figure 9 Data flow and data reduction steps in the operational mode

9.1 Pre-processing of input
Data sets produced by the grabber contain original data with no reductions or
adjustments applied. This is intentional, see chapter 8.2. Before proceeding with
further steps, feature extraction needs the data to be pre-processed.
The fact that movements are random, the limited spatial and temporal resolution
of sampling, and also the effort to deliver mouse movements to applications as
soon as possible, all lead to artifact. Removal of these artifacts and corresponding
data adjustment is described in the following chapter 9.1.1.
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Figure 10 Histogram of time distance of grabbed mouse events, an example

9.1.1 Removal of quantization artifacts
It is clear from figure 10 that the sampling period of grabbed data is 8 milliseconds.
The resolution is fairly limited and it causes two kinds of artifacts to appear in
input data:
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• events with zero time distance,
• events with zero coordinate distance.
Events with zero time distance would normally appear later, but due to the 8-ms
sampling period, theymerge with immediately preceding events. Zero-time events
are inappropriate because, if used, they would lead to infinite movement velocity.
To repair these zero-time events, their coordinates (x and y) and mouse button state
changes are added to the closest preceding event that does not have zero time.
Events with zero coordinate distance are simply omitted because they do not carry
any information about mouse movement. In order to preserve correct information,
the time difference and button state changes of omitted events are again added to
the closest preceding event.

9.2 Strokes and markers
The input data stream contains information about minimal changes in mouse
movements. The reason is that the driver sends information about movements
to the operating system as quickly as possible to give the user an impression of
immediate responses. However, such an approach divides the single intention of
a person performing some action (see chapter 6.4.3) into small unlinked pieces,
that must be joined back in order to get the information about the whole intention.
The complete procedure of creating strokes and markers from the input stream is
described in following chapters. An overview of the process is also given in the
summary figure 16 at the end of this section.

9.2.1 Detecting strokes
The principle of usingmouse-like devices in 2DGUI is that the device is a pointing
device. Before the desired action takes place, the mouse-like device must be
pointed or moved to the wanted target, where the action is finally performed. This
simple description offers two ways of determining what the stroke is:
• Firstly, the stroke might be a continuous sequence of mouse events that ends
when the movement stops, when no movement appears for some time.
This time that delimits the end of the stroke is called a time gap ending the
stroke, or simply a gap throughout the further text.

• Secondly, the stroke might be a sequence of events that ends when the mouse
button is clicked. In other words it ends with performing the target action.

This dissertation uses the first way that utilizes the gap.
In the referred work [4], strokes are detected differently—users manipulated the
mouse through a prepared path and then the whole track, including many moves
and more clicks, was considered to be a single stroke.
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9.2.2 Degraded strokes
Both methods of stroke detection may produce strokes having almost no move-
ment. These can be, for example, delayed clicks (i.e. clicks without a preceding
movement), or jitter movements when the mouse, in fact, stays in one place.
Such degraded strokes are unusable for purposes of identifying people because
they do not contain information about controlled arm movements. Therefore,
degraded strokes are discarded.
Stroke detecting algorithm accept only strokes that fulfil all the criteria:
• the stroke contains at least 5 mouse events,
• the stroke movement spread is bigger than 3 pixels,
• the stroke is not straight.

9.2.3 Smoothing
The limited sampling frequency of mouse inputs ( fs = 125 Hz, see chapter 9.1.1)
causes strokes not to be smooth. Because further processing uses differences as an
approximation for a derivative, smoothness is important—insufficient smoothness
produces false peaks and improperly extends the limits of measured quantities.
Although smoothing improves the quality of the stroke regarding differences, the
stroke still may be considered of insufficient quality. Sometimes changes in
mouse movements are sudden and rapid, and the used sample rate does not allow
proper tracking. For example, when a stroke directs back and forth movement
across a whole screen within 50ms, it would approximately require about tpx =

50 ms/2000 px = 2.5 × 10−5 s to track a single pixel movement, that gives fs ≥
2

tpx
= 80 kHz [45]. Mouse driver sampling frequency is far beyond this value.

Refer to the discussion of the experiment 10.3.1 at page 88 to learn more.
Two methods of smoothing were evaluated:
• the 2D Catmull-Clark subdivision (with less computational complexity) and
• the smoothing spline (with greater computational complexity).
The 2D Catmull-Clark subdivision is a variant of 3D surfaces subdividing [46].
Its principle is displayed in figure 11. This method replaces each inner vertex
of the path with three new vertices: two midpoints of path segments adjacent to
the replaced vertex, and one barycenter of the original vertex and both midpoints.
Looking at figure 11, the original vertex O2 is replaced with new midpoints N2,
N4, and the barycenter N3, and the original vertex O3 is replaced with midpoints
N4, N6 and the barycenter N5.
The 2D Catmull-Clark subdivision smooths only a very local part of the path. This
characteristic is not convenient for smoothing strokes because local smoothing
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Figure 11 The 2D Catmull-Clark subdivision on a four-segment path

produces sub-pixel changes. It does not respect the path as a whole and it does not
remove pixels that are evidently placed off the smooth movement curve.
The second method, the smoothing spline [47], is a method replacing each vertex
Vi of the path with a spline S i connected to the previous S i−1 keeping continuity
properties up to the second derivative. This dissertation uses algorithms developed
for the SSJ (Stochastic Simulation in Java, [48]) project; the algorithm is based on
[47]. In a nutshell, smoothing spline is an interpolating spline that is allowed to by-
pass interpolated points. The measure of passing by is expressed with parameter λ:
λ = 1.0means that the spline is interpolating (no passing by), λ < 1.0mean that the
spline is smoothing (some passing by). The smoothing spline is capable of leaving
out points that are off smooth movement path, when λ < 1.0. Simultaneously the
smoothing spline can preserve sharper tips when λ→ 1.0.
Comparing these two methods revealed that the smoothing spline gives more
acceptable results than the 2D Catmull-Clark subdivision. This is likely because
the smoothing spline is able to remove off-path points, and is able to respect points
on a larger scale. As a result, the 2D Catmull-Clark subdivision is not used in this
dissertation and preference is given to the smoothing spline with λ = 0.999.
Each input event contains three components—the x-coordinate, the y-coordinate,
and the time. Therefore three independent smoothing splines must be constructed
for each stroke. For each component x, y or t the corresponding spline is built with
the help of the artificial parameter po

i which represents an independent variable of
the spline. In the description that follows, upper index o means original :

~xo = xo
1, x

o
2, . . ., x

o
n (20)

~yo = yo
1, y

o
2, . . ., y

o
n (21)

~to = to1, t
o
2, . . ., t

o
n (22)
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~po = 0,
1

n − 1
,

2
n − 1

, . . ., 1 (23)

Sx = CS
(
(po

1, x
o
1), (p

o
2, x

o
2), . . ., (p

o
n, xo

n); λ = 0.999
)

(24)

Sy = CS
(
(po

1, y
o
1), (p

o
2, y

o
2), . . ., (p

o
n, yo

n); λ = 0.999
)

(25)

St = CS
(
(po

1, t
o
1), (po

2, t
o
2), . . ., (po

n, ton); λ = 0.999
)

(26)

where n is the number of stroke items; (20), (21) and (22) are vectors of particular
components; (23) is a vector of n values of the independent variable distributed
evenly into [0, 1]; CS is the constructor of the smoothing spline and (24), (25) and
(26) are smoothing splines for ~x, ~y, ~t. xo

i , yo
i or toi are dependent variables of the

each particular spline.
An example of (25) is given in figure 12.
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Figure 12 Stroke’s y-coordinates smoothed with spline Sy (25), an example

9.2.4 Re-sampling
Strokes contain at least 5 input events. Considering second order differences
(which need to be computed to obtain quantities), there is only space for two dif-
ferences. This is a low number which complicates computing statistical properties
of the quantities concerned.
Although algorithm extracting markers (see chapter 9.3) is designed to accept such
short strokes, a side effect of smoothing actually helps with the problem. The 2D
Catmull-Clark subdivision adds points by principle and the smoothing spline can
be sampled as densely as needed, in as many points as needed.
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For the purposes of this dissertation, smoothing splines that are constructed from
the original vectors (20), (21) and (22) having n components are sampled twice
as densely as the original. Therefore newly created re-sampled vectors (27), (28)
and (29) have 2(n − 1) + 1 = 2n − 1 points:

~p = 0,
1

2n − 2
,

2
2n − 2

, . . ., 1

~x = Sx(p0),Sx(p1), . . .,Sx(p2n−1) (27)

~y = Sy(p0),Sy(p1), . . .,Sy(p2n−1) (28)
~t = St(p0),St(p1), . . .,St(p2n−1) (29)

An example of the resulting re-sampled path is displayed in figure 13.
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Figure 13 Comparison of smoothing using the
2D Catmull-Clark subdivision and the smoothing spline

9.2.5 Computing markers
Re-sampled strokes are composed of three vectors ~x,~y and~t. They certainly contain
information that is specific to the corresponding person, but this information is
hidden, sparse and still describes a movement rather than a person. Inspired by [4],
this dissertation uses a procedure of reducing input positions to statistical markers.
In general, input positions are re-computed to many kinematic and dynamic quan-
tities which are then statistically processed to obtain markers. This process is also
shown in figures 14 and 15:
1. the computation of derived quantities
All three vectors (27), (28) and (29) are processed in order to obtain new
vectors of derived kinematic and dynamic quantities.
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Figure 15 Division of negative and positive vectors
of quantities into beginning, middle and end portions

For example, taking differences pdx = p+1x − px and pdt = p+1t − pt, values of
quantity vx (x-coordinate velocity) pvx = pdx

pdt are computed.

There are many other quantities qi computed. Their list, along with their
definition, is provided in chapter 9.2.6.

2. the division of vectors of quantities into negative, zero and positive parts
~qi is split into negative ~q−i , zero ~q

0
i and positive ~q

+
i parts (see figure 14). This

is in order to help further compose features (see chapter 9.3).
3. the futher division of each part into beginning, middle and end portions
The sub-vectors ~q−B

i , ~q
−M
i , ~q−E

i , ~q
+B
i , ~q

+M
i and ~q+E

i are extracted as the beginning,
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the middle and the end portion of complete ~q−i and ~q
+
i . The beginning portion

contain the first 25% of vector items, the middle portion contains the next
50% of vector items and the end portion contains the last 25% of vector items.
The process is displayed in figure 15.
The intention of using of four vectors (complete, beginning, middle and end
vectors) for each quantity is to analyze the start, the middle and the end of
the stroke separately. The idea is, for example, that at the beginning of the
stroke the mouse must be accelerated, at the middle the acceleration should
vary around zero, and at the stroke’s end the movement must be decelerated.
These changes in acceleration should appear in computed acceleration vectors.
Splitting complete vectors into the beginning, the middle and end portions
should help reveal these changes.

4. the computation of statistical properties of all vectors
For each of these eight vectors ~q−i , ~q

−B
i , ~q

−M
i , ~q−E

i , ~q
+
i , ~q

+B
i , ~q

+M
i and ~q+E

i the
following statistical properties are computed: the minimum 0, the arithmetic
average 2, the maximum 4, the spread S (S = 4 − 0) and the deviation D.
Due to the fact that q−B

i0 = q−i0, q
+B
i0 = q+

i0, q
−E
i4 = q−i4 and q+E

i4 = q+
i4, the values

q−B
i0 , q

+B
i0 , q

−E
i4 and q−E

i4 are dropped because they are duplicates.
Together, there are 18 statistical properties for each quantity qi used.

9.2.6 Quantities used for markers
This chapter contains a list of all utilized quantities, including the expressions used
to compute them. Take notice of the following:
• indexes of vectors’ components (like p or p+1) are written to the left to the
symbol so that indexes and quantity specification are not mistaken (like e.g. t
means tangential),

• numbered equations represent utilized quantities, whereas unnumbered equa-
tions show only the process of computation.

px x-coordinate (30)

py y-coordinate (31)

pdx = p+1x − px

pdy = p+1y − py

pdt = p+1t − pt

pds =

√
pdx2 + pdy2 length of smoothed stroke segment
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pvx =
pdx
pdt

pvy =
pdy
pdt

pv =

√
pv2

x + pv2
y velocity (32)

pdv =
p+1v − pv

pdt
time difference in velocity (33)

pd2v =
p+1dv − pdv

pdt
second time difference in velocity (34)

pφvxy = atan(pvx, pvy) (codomain of atan is [0, 2π])

pφv = p+1φvxy − pφvxy velocity angle along the stroke (35)

pvn = sinpφv normal velocity (36)

pcs =
p+1φv − pφv

pds
curvature (37)

pdcs =
p+1cs − pcs

pds
difference in curvature (38)

pω =
pφv

pdt
angular velocity (39)

pdω =
p+1ω − pω

pdt
difference in angular velocity (40)

pax =
pvx

pdt

pay =
pvy

pdt

pa =

√
pa2

x + pa2
y acceleration (41)

pφaxy = atan(pax, pay) (codomain of atan is [0, 2π])

pφa = p+1φaxy − pφaxy acceleration angle along path (42)

pan = sinpφa normal acceleration (43)

pca =
p+1φa − pφa

pds
acceleration curvature (44)

dxd = lastx − 0x difference in x of the last and the first stroke point

dyd = lasty − 0y difference in y of the last and the first stroke point
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sd =

√
dx2

d + dy2
d distance from the stroke begin to its end (45)

si =
∑

p
pds integrated stroke length (46)

ti =
∑

p
pdt integrated stroke duration (47)

csi =
∑

p
pcs integrated curvature (48)

vd =
sd

ti
direct velocity (49)

psri =
1
si

p∑
1

pds ratio of developing of si (50)

r = 1 −
sd

si
inverted straightness (51)

podso =

√
podxo2 + podyo2 unsmoothed stroke segment length

so
i =

∑
po

podso integrated length of unsmoothed stroke

j =
so
i

si
jitter, ratio of original to smoothed length (52)

In total there are 22 quantities computed for each stroke, which together with
statistical properties computed gives 396 markers for each single stroke.

9.2.7 Summary and discussion of strokes and markers
Strokes are representations of single mouse movements that correspond to a single
person’s actions. Strokes are built from input stream containing a sequence of x
and y coordinates of mouse-like device position and time instants t. The input
stream is continuous whereas strokes are sequences clipped out of the stream.
The input stream is noisy and likely the primary source of the noise is insufficient
sampling frequency. To overcome this, input data is smoothed using smoothing
spline and then re-sampled to obtain twice as many samples.
The stroke’s re-sampled data is passed to engine which computes 22 vectors
of derived quantities (like curvature, velocity and so). Then, these vectors are
statistically processed and 18 statistical markers are calculated for each of the 22
vectors of quantities. For example, from a vector, that contains curvature at each
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point of the stroke, the minimum, the average, the maximum, the spread and the
deviation of the curvature is computed.
There are many computed markers (396), compared with the minimum length
of the stroke which is 5 input events. Computing many markers cannot add
information to the strokes, thereforemanymarkers are redundant. This redundancy
is reduced during the feature selection (see chapter 10), where no more than 15 of
the most significant features (built from markers) for each person is selected.
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Figure 16 An overview of stroke processing, from input stream to markers

In short, the input data stream is split into strokes which are represented by
statistical properties (i.e. markers) of their quantities. The complete process flow
is reviewed in figure 16.

9.3 Features
Statistical markers computed for each stroke (that represents a single movement
action) describe a given person, however, it is still not enough. The main reason
for this is that single stroke does not account for all speeds, directions, strengths
and sudden movements the person has—larger statistics are needed.
In [10] and [4], an approach has been developed whereby markers of many individ-
ual strokes are replaced with an estimated probability distribution. This approach
reduces hundreds or thousands of individuals markers to a few numbers that pa-
rametrize chosen random variables called a feature; the theory for the reduction is
given in chapter 4.3 and 6.4.3.
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9.3.1 Acquiringmore statistics with utilizing the whole data sets
As was described in chapter 8.3, six data source sets exist for each user that is
involved in experiments. These data sets typically contain more than 2000 strokes
in each data set. This amount is divided into two halves: the first half is used to
extract/train features, and the second half is used to select/tune the best features
for each person. The first half is a training set and the second half is a tuning or
validation set.
Utilizing the full training set gives an amount of data that is large enough to find
an appropriate random variable.
Data sets are split into training (T ) and validation (V) parts (also see figure 7):

D−e → D−T
e + D−V

e D+
e → D+T

e + D+V
e De

e → DeT
e + DeT

e

A−e → A−T
e + A−V

e A+
e → A+T

e + A+V
e Ae

e → AeT
e + AeV

e

9.3.2 Determining probability distribution
There are three problems related to determining probability distributions:
Which probability distribution best matches with marker distribution?
There are seven distributions available in the software model used in this
dissertation. In [4], Weibull distribution is used for all markers because this
distribution is able to emulate both exponential-type andGaussian distributions.
Data used in this dissertation shows that utilizingmore different distributions is
beneficial, because the observed data has only rarely clear Weibull distribution.

Data cannot fit into any available distribution.
The solution to this problem is data transformation. Two techniques are used
in this dissertation: splitting signs and logarithms.

Neither of the transformed data can fit into the available distributions.
In this case the marker simply cannot be used because no random variable can
be chosen and no feature can be derived from this marker.

Each of these problems will be discussed more thoroughly in the following text.
Which probability distribution best matches with marker distribution?
There are two ways of selecting the best-matching distribution: firstly, estimated
distributions can be evaluated mathematically, and secondly, evaluation can be
done using charts and eyes. This dissertation uses a combination of both ways.
All seven distributions available for describing the distribution of marker’s values
are described in chapter 4.2.1 in the theoretical part. These distributions are
Gaussian, logistic, lognormal, inverse Gaussian, gamma, Weibull and Rayleigh.
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In order to decide which distribution best describes the data, statistical tests are
available. However, they were used only as a supporting criterion in this disserta-
tion. The available distributions were firstly matched with data, secondly results
of the matching were ordered according to Kolmogorov-Smirnov test [35] and at
the last the best-matching distribution was chosen to be easy on the eye. If a priori
knowledge of distribution had been available, it was also used (for example, the v
should have Rayleigh distribution, because it is a vector sum of vx and vy).
The identification system developed for this dissertation is capable of estimating
distribution parameters but it cannot visualize these distributions, and neither it can
apply statistical tests to find the best one. For this purpose a standalone program
called EasyFit [32] was used. Two examples of marker distributions in EasyFit
are given in figures 17 and 18. The first figure shows the distribution of dω+

2
(as in figure 22) with logistic distribution fitted. The second figure 18 shows the
distribution of a−B

nD, which does not fit any available distribution.

Figure 17 Histogram of dω+
2 with estimated

Gaussian and logistic distributions in EasyFit

Data cannot fit into any available distribution
The figures 19 and 20 show an example of histograms for two marker distributions,
which cannot fit any distribution. The first histogram of dω0 contains only negative
values, whichmeans it cannot fit any exponential distribution. Logistic distribution
displayed in the chart is the best matching distribution of available Gaussian and
logistic distributions.
The second histogram of dω2 shows steep symmetrical distribution. Due to the
steepness, the data can hardly match any distribution. As for the first case, the best
matching distribution is also logistic.
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Figure 18 Histogram of a−B
nD with estimated gamma

and inverse Gaussian distributions in EasyFit
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Figure 19 Histogram of dω0 marker values with unusable best-fit distribution

Two ways of transforming data were tested. The first attempt used a simple
subtraction of minimum (according to [4]), but the results were not satisfying. It
moved data to positive values, but peaks (as for dω2 in figure 20) or increasing
exponentials (as for dω0 in figure 19) were not resolved using this method.
The second attempt of transforming data was more complex and consisted of two
steps. This attempt was also chosen to be used in this dissertation:
• In the first step, values of a particular marker are split into negative and positive
parts. The process is explained in point 2 of chapter 9.2.5. The negative parts
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Figure 20 Histogram of dω2 marker values with unusable best-fit distribution

are negated, which gives positive values. For instance, with respect to figure 20,
~dω2 is split and negated to − ~dω−2 and to ~dω+

2 .
The transformation allows separate analysis of negative and positive values,
as well as separate matching with the negative and positive values of markers.
The transformation also enables the use of bounded, non-negative distributions
like lognormal, inverse Gaussian and so on. Separating positive and negative
parts is applied to all markers with symmetrical distributions.

• In the second step, positive values resulting from the first transformation al-
lows the use of logarithms. Logarithmic transformation decreases the value
range and converts exponential-like distributions to other distributions. As
a result, exponential-like distributions (which all look similar close to zero)
are re-computed to distributions where differences can be better distinguished.
Logarithmic transformation is applied only selectively to markers where apply-
ing logarithms improves matching with the probability distribution.

To demonstrate how dω2 changes after applying both transformations, i.e. split
and logarithm, figures 21 and 22 were prepared.
Comparing figure 20 to figures 21 and 22 shows that the probability distribution
fitted to the transformed data is more precise.
Neither of the transformed data can fit into the available distributions
In order to keep only relevant data, all markers with unsuitable distributions (like
in figure 18) were discarded. This removal decreased the number of markers from
396 (see chapter 9.2.5) to 228, which consequently means that the number of used
features is also 228 (see the following chapter 9.3.3).
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Figure 21 Histogram of dω−2 marker values with best-fit distribution
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Figure 22 Histogram of dω+
2 marker values with best-fit distribution

9.3.3 Overview of chosen features
The following overview lists all chosen features together with their corresponding
best-fit probability distribution:
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9.3.4 Discussion of features
Extracted features can be classified into groups according to their physical meaning.
There are, for example, static features (distance or coordinates), features related
to dynamics of the movement (velocity or acceleration) and features related to
turning (normal velocity or angular velocity). Similarly, groups can also be
made from related statistical properties. For example, the spread is related to
deviation and the overall average value might be related to the average of the
middle portion. Features in each group, no matter how the group is created, might
be interchangeable.
It is also likely that particular individual features are more prominent for some
entities than for others.
It would be beneficial to know all mentioned relationships and meta-information,
but due to the fact that the inner structure of used features is unknown, these
relationships are difficult to uncover. The latter feature selection phase is partially
utilized to get at least some of this information. The topic is further discussed in
the summary related to feature selection (see chapter 10.7).
Selecting and estimating probability distributions could be further improved in
other ways: more distributions could be used or bigger statistics could be obtained
from longer input. It could be also possible to replace the method of how features
are modeled— for instance, using random variables could be replaced with using
histograms or interpolating curves. All these possibilities are not explored in this
dissertation and need further research.
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9.4 Summary of feature extraction
Extracting strokes andmarkers from rawmouse data is a preliminary phase for both
operational modes—training and running. It is also a prerequisite for experiments
with the identification system as a whole. Raw input is scattered and contains only
sparse information, but by feature extraction process, it is converted to markers
and features that represent condensed and abstracted information.
To convert raw data in the described way, it must first be cleaned, sliced to
pieces corresponding to single-movement units i.e. strokes, then strokes must be
smoothed and finally quantities can be computed from the stroke’s input events.
Two algorithms of smoothing were tested, 2D Catmull-Clark subdivision and the
smoothing spline. The smoothing spline was chosen mainly due to its ability to
respect the stroke path on larger scale.
When the system runs in its operationalmode (see chapter 5.1.2), the markers are
the final product of the extraction phase. The markers are statistical properties of
quantities computed from stroke’s path points. After extracting the markers, each
stroke is represented with 18 statistical properties of 22 computed quantities.
If the identification system runs in its training mode, the markers are not final but
they are further processed to obtain features. The features are random variables (of
selected distributions) which parameters are estimated from the distributions of the
corresponding markers. In order to obtain good statistics for estimating, markers
of a half of all grabbed strokes were used. Not all markers were successfully
matched with a probability distribution, and such markers were discarded. The
number of available features then decreased from 396 to 228.
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10 FEATURE SELECTION
Features derived from chosen markers are many, unspecific, and it is not known
how well they describe the corresponding person. It is also not known how much
information content they carry.
Feature selection is a process that helps resolve both these uncertainties by finding
a set of the most relevant and informative features [39]. The theory of this process
is described in chapter 5.3.

10.1 General mechanism
The general mechanism of feature selection uses a selection algorithm (either SFS
or SFFS, see chapter 5.3.2) which compares candidate sets by using selection
metric (see chapter 5.3.3). In particular, for each entity the entire amount of
features is pruned to obtain the set which best describes the entity. This has the
following significance:
• each entity gets its own set of best-describing features, therefore
• different entities are described with different features.
The trained features created by the feature extraction utilizing training data sets
are evaluated using samples randomly selected from tuning data sets (see figure 7).
In order to determine how relevant particular features are for each particular person,
the tuning samples must contain data of all persons. Therefore, in the experiments
related to selection algorithm (see chapter 10.2), always a mixture S of samples
of all t entities is used for this purpose: t − 1 samples are taken from the tuned
entity, and single sample is taken from other t − 1 entities. In total, the mixture S
contains 2(t − 1) samples. An overview of constructing S is shown in figure 23.
All three used metrics (SPP, EER/polylines and dEER, see chapter 5.3.3) require
multiple samples, what is in concordance with the previous paragraph. For each
particular metric, suitability of S is computed as follows (see also figure 23):
SPP, single posterior probability, (12)
Single se (12) is used to measure suitability, and effectively only t samples of
S are used. The set S is considered better when se is closer to 1.
Using SPP, the measure of suitability of S is computed from a single value:

∣∣∣MSPP
∣∣∣ = 1 (53)

EER/polylines
Multiple se values of genuine samples and multiple s f values of impostor
samples are computed, see (12). se values are t − 1 and they are used to build
FNMR polyline, s f values are (t−1)2 and they are used to build FMR polyline.
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Figure 23 Constructing sets of tuning samples, computing selection metrics

Following this, the EER is computed geometrically as the intersection point of
both FNMR and FMR polylines. S is considered better when the y-coordinate
of the EER is closer to 0.
Using ERR/polylines, themeasure of suitability ofS is literally computed from
four values, from the first and the second point of the intersecting segments of
both polylines. Moreover, the position of the intersection point is indirectly
determined by all points in the FMR and the FNMR polylines:

4 ≤
∣∣∣MEER/p

∣∣∣ ≤ (t − 1)2 + (t − 1) = t(t − 1) (54)

dEER, (19)
Multiple se values of genuine samples and multiple s f values of impostor
samples are computed, see (12). se values are t − 1 and s f values are (t − 1)2.
According to (18) and (19) dEER is computed statistically.
The set S is considered better when dEER is closer to 0.
Using dEER, the measure of suitability of S is computed from t(t − 1) values:

∣∣∣MdEER
∣∣∣ = t(t − 1) (55)

Chapter 5.3.2 explains the criteria needed to stop the selection algorithm. The
experiments described below use the following common settings for thresholds,
s indexes steps (denote w = EER or 1 − se or dEER):
absolute threshold

sw ≤ 1 × 10−6,
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relative threshold
|sw − s−1w| ≤ |s−1w − s−2w| ≤ 1 × 10−6,

maximum number of searched features for SFFS
k = 15.

10.2 Experiments with feature selection algorithms
Feature selection can run two algorithms (SFS and SFFS) and it can use three
variants of metrics. The success of selection also depends on the size of tuning
samples. The experiments described in the following chapters were designed to
explore all these aspects.

10.2.1 Comparison of SFS and SFFS
To compare the abilities of SFS and SFFS in finding the most relevant set of
features, the experiment was carried out with the following setup:
• training sets A+T

e were used to create entities and their features,
• tuning samples containing 20 consecutive strokes were selected once and were
fixed for the entire operation of the experiment,

• the gap used in detection of strokes was 100ms,
• using these samples, both algorithms were run with all available metrics for
all entities; this, in total, gave 96 (2 × 3 × 16) runs, i.e. six for each entity,

• six runs of each entity were compared regarding their selected features to see
how many features found by SFS and SFFS actually corresponded.

feature
extraction

Ai+TAi+TAi+T, training

Ai+TAi+Tentity Ee

Ai+TAi+TAi+V, tuning

EER/p dEERSPP

SFFS

EER/p dEERSPP

selected features,
their comparison samples

of 20 strokes

SFS

EER/p dEERSPP

Figure 24 Scheme of experiment comparing SFS and SFFS

The scheme of the experiment is displayed in figure 24 and the results of the
experiment are displayed in table 3. The features in each determined set are
ordered according to decreasing contribution.



80

The table contains two more pieces of information:
• if SFS and SFFS found results that differ from each other, they are marked
with a frame surrounding the feature sets,

• the feature sets for which the selection algorithm did not achieve absolute
ending criterion (it roughly means that the selection algorithm did not find
a good solution, see chapter 10.1) are preceded with a cross mark ×.

Table 3 Features found by SFS and SFFS for each entity using all metrics

e metric SFS features SFFS features

1
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These results contain 15 differences between SFS and SFFS, which is 31% of the
total. SFFS was also more successful with achieving the absolute criterion—5 out
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of 7 (71 %) attempts were improved. The number of differences between SFS and
SFFS also shows that features are sensitive to the nesting effect (see chapter 5.3.1).
There are evident differences in sets found by SPP criterion and found by two
other criteria. This can be explained with the already mentioned number of values
used to compute the criterion, see (53), (54) and (55). More points mean better
separation between genuine and impostor distributions, and consequently both the
criteria using more points have their results more similar.
Differences produced with SFS are not further analyzed because SFS is a single-
point criterion, see (53), which cannot be used as a quality measure of the identifi-
cation system (see chapter 5.2).
The overall results of the experiment are that:
• the used features manifest the nesting effect,
• SFFS outperforms SFS, mainly in terms of its ability to find better solutions
and to overcome the nesting effect,

• SPP gives different results,
• EER/polylines gives similar results to dEER, which validates (19). It alsomeans
that dEER can replace the EER computed in a traditional way.

10.2.2 Comparison of the computational complexity of metrics
The computational complexity of feature selection algorithms is of medium im-
portance. Feature selection does not run frequently, it needs to be run only when
a new entity for a person is created. The process is time consuming: it takes around
4 hours on a single core computer to explore the space of a maximum 15 out of
200 features for 16 entities using SFFS.
The experiment intended for the comparison of the computational complexity of the
metrics was set up and carried out in an identical fashion to previous experiment:
• training sets A+T

e were used to create entities and their features,
• tuning samples containing 20 consecutive strokes were selected once and were
fixed for all runs of the experiment,

• the gap used in detection of strokes was 100ms,
• the SFS and SFFS were run with all available metrics for all entities, in total
this was 96 (2 × 3 × 16) runs,

• the complexity was compared according to the number of steps the SFS or
SFFS performed. One step represents a single matching a 20-stroke sample
with all entities using the current feature set. All se and all s f values (see
chapter 10.1) are computed in this one step in the amount that the chosen
criterion needs.

The results are displayed in table 4.
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Table 4 The computational complexity of SFS and SFFS for all metrics

SFS SFFS

entity metric steps features η steps features η

1

SPP 906 4 1.00 909 4 1.00

EER/p 1353 6 1.00 1365 5 0.99

dEER 1796 8 1.00 2049 4 0.44

2

SPP 681 3 1.00 681 3 1.00

EER/p 228 1 1.00 228 1 1.00

dEER 228 1 1.00 228 1 1.00

3

SPP 228 1 1.00 228 1 1.00

EER/p 228 1 1.00 228 1 1.00

dEER 228 1 1.00 228 1 1.00

4

SPP 906 4 1.00 909 3 1.00

EER/p 1130 5 1.00 913 3 0.99

dEER 906 4 1.00 909 4 1.00

5

SPP 1796 8 1.00 2763 9 0.73

EER/p 906 4 1.00 1135 4 0.80

dEER 906 4 1.00 909 4 1.00

6

SPP 681 3 1.00 681 3 1.00

EER/p 906 4 1.00 909 3 1.00

dEER × × 0.00 × × 0.00

7

SPP 681 3 1.00 681 2 1.00

EER/p × × 0.00 1829 7 0.86

dEER × × 0.00 1365 5 0.83

8

SPP 681 3 1.00 681 2 1.00

EER/p 228 1 1.00 228 1 1.00

dEER 228 1 1.00 228 1 1.00
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9

SPP 681 3 1.00 681 3 1.00

EER/p 228 1 1.00 228 1 1.00

dEER 228 1 1.00 228 1 1.00

10

SPP 681 3 1.00 681 3 1.00

EER/p × × 0.00 1137 4 0.80

dEER × × 0.00 910 3 0.75

11

SPP 1130 5 1.00 1141 5 0.99

EER/p 455 2 1.00 455 2 1.00

dEER 455 2 1.00 455 2 1.00

12

SPP 1353 6 1.00 1593 5 0.71

EER/p × × 0.00 1374 5 0.82

dEER × × 0.00 × × 0.00

13

SPP 228 1 1.00 228 1 1.00

EER/p 228 1 1.00 228 1 1.00

dEER 228 1 1.00 228 1 1.00

14

SPP 681 3 1.00 681 2 0.59

EER/p 681 3 1.00 681 3 1.00

dEER 681 3 1.00 681 3 1.00

15

SPP 228 1 1.00 228 1 1.00

EER/p 228 1 1.00 228 1 1.00

dEER 228 1 1.00 228 1 1.00

16

SPP 906 4 1.00 909 4 1.00

EER/p 906 4 1.00 909 4 1.00

dEER 1130 5 1.00 1137 5 0.99

η displayed in the last column of the table is computed as a ratio of the optimal
minimum number of steps (needed for the particular resulting number of features)
to achieved number of steps.
SFFS always requires at least the same number of steps as SFS (which is by
design). SFFS is always worse than SFS, when features must be skipped in order
to overcome the nesting effect.
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Regarding the complexity of the algorithms, SFS is only capable of adding features
and its speed is related to n2, where n is the number of features. SFFS, on the other
hand, selects from all possible combinations of features, and its speed relates to
2n. Regarding the metrics, SPP is always faster because it needs t (where t is the
number of entities) matching samples with entities, but EER/polylines and dEER
require t(t − 1) matching operations.

10.2.3 Discussion of the feature selection algorithms
Both experiments that compared SFS to SFFS, including all three available metrics,
revealed that both algorithms, to some extent, were capable of selecting descriptive
features for each entity. The comparison of the algorithms is as follows:
• The extracted features are sensitive to the nesting effect (5.3.1) which cannot
be resolved by SFS. Of the result sets computed, 31% were better computed
with SFFS.

• SFFS has substantially bigger time complexity. For SFS the time complexity
is OSFS(n2) and for SFFS it is OSFFS(2n), where n is the number of features.

• Because SFFS is an extension of SFS, SFFS can find the solution in the same
time as SFS when the nesting effect does not happen.

Three compared metrics, SPP, EER/polylines and dEER behave in this way:
• EER/polylines and dEER use all points of FNMR and FMR so they drive the
selection algorithm better than SPP. The difference is visible in the resulting
sets of features: SPP sets differ from sets found with EER/polylines and/or
dEER. Due to less used points, feature sets obtained with SPP are more likely
to be improper.

• The number of used points also affects the time complexity. The complexity
of SPP and dEER is OSPP(t), while the complexity of the EER is OEER(t2).

There is a high number of nesting effect occurrences (approximately one third),
and this rules out SFS. Also, because usage of SPP is likely to lead to improper sets,
SPP is not good metric for selecting utilized mouse-related features. As a result,
the most suitable combination for this dissertation’s feature selection is the SFFS
together with ERR/polylines or dEER.
The overall time complexity of the SFFS/EER variant is O(2n · t2), and the overall
time complexity of the SFFS/dEER is O(2n · t). The features part (2n) is quite
manageable because the number of features is pre-defined and it does not increase
during the operational phase. The entities part for the EER (t2) may cause problems
when the number of entities increases (the entity number equals the number of
people). The feature selection can run offline, so time need not be an issue, however
online usage, or usage for a large number of entities (approximatelymore than 100)
would be difficult. In such cases, feature selection would require a completely
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different algorithm, for example stochastic (like [50]). The other way is not to use
the ERR and replace it with dEER, as it is done in this dissertation.
More about the performance of the EER and dEER can be found in [49].

10.3 Exploration of selection stability
The feature selection process, which searches for the most descriptive features, is
driven by random tuning samples containing a pre-defined number of strokes m.
Random sampling poses one question and choosing m poses two more questions:
1. Are feature sets found using different samples the same or not? The question
is analyzed in experiments 10.3.1, 10.3.3, 10.3.2 and 10.3.4.

2. Is feature set found for some mi the same as feature set found for different m j,
and if not, then how much do they differ? An analysis of this problem is given
in experiments 10.3.5.

3. How does the system that is tuned for samples havingmt strokes accept samples
containing more or less strokes ms? Two experiments relate to this question:
experiment 10.5.1 and 10.5.2. Both these three experiments are explained in
chapter 10.5.

Answering these questions allows better decisions about:
• The usability of the identification model used in this dissertation (see chap-
ter 7.2).

• Optimal m. The optimality criterion may, for example, be the number of
selected features, or the EER.

• The relationship between ms and mt. Should be mt = ms, or less, or bigger?

10.3.1 Repeatability of selection (all features used)
The following experiment was designed and carried out to determine how tuning
samples affect the selection process:
• training sets A+T

e were used to create entities and their features,
• tuning samples containing 40 consecutive strokes were randomly chosen in
each of the five runs of feature selection,

• the stroke detector delimited strokes with the gap of 64-ms duration,
• the configuration for the selection process was SFFS/dEER,
• the selection process selected from all 228 features available,
• five runs of feature selection for all of 16 entities produced 80 feature sets in
total,

• the content of feature sets for each entity was compared—the experiment
produced 5 different attempts for each entity.
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Table 5 The comparison of feature sets size, 64-ms gap, all features used
entity run 1 ∩ run 2 ∩ run 3 ∩ run 4 ∩ run 5 ∩ of all

1 ×1 1 ×2 0 ×1 0 ×4 0 ×1 0

2 6 4 ×8 2 ×6 4 ×11 4 ×5 1

3 4 1 5 2 6 0 ×2 0 3 0

4 4 1 ×5 0 ×5 0 ×6 0 ×13 0

5 ×13 0 3 0 ×6 0 5 0 4 0

6 ×12 1 5 2 6 3 9 2 ×6 0

7 3 1 3 1 3 0 ×2 0 3 0

8 3 1 4 0 3 0 2 1 3 0

9 4 0 2 0 3 1 7 1 5 0

10 4 1 5 0 ×6 1 3 1 ×5 0

11 ×6 1 ×8 2 ×10 1 ×6 0 ×5 0

12 4 1 4 2 3 1 5 0 ×7 0

13 5 1 7 1 3 1 2 0 3 0

14 ×7 4 ×4 1 ×13 1 ×10 0 6 0

15 1 0 1 0 1 1 1 0 1 0

16 1 0 1 1 2 2 2 1 2 0

The results are displayed in table 5. If the selection algorithm did not find the
optimal set (the absolute ending criterion was not satisfied, see chapter 10.1) a ×
mark is put into the cell.
The table 5 contains the numbers of features selected in each run. To measure the
similarity of sets, the number of shared features is computed between set 1 and 2,
and also between 2 and 3, between 3 and 4 and also between 4 and 5, and then
placed into a column between corresponding runs. In the last column there is the
count of features shared among all five runs.
Results clearly show that repeating feature selection gives results that are unrelated.
Each feature selection run constructs its own feature set that has minimal overlap
with other sets. The feature set is properly chosen, but it works only for the given
tuning samples; the feature set depends on tuning samples.
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The result, in principle, means that the used feature extraction and feature selection
processes could not satisfy requirements to the identification system, and conse-
quently that the identification system cannot be constructed this way. There is the
possibility though, that unrelated feature sets can still be related due to similarities
in features. This surmise will be explored in further experiments.
Why do not feature sets correspond? Here are some hypotheses:
• H1. Input data is too irregular or undersampled (see chapter 9.2.3). Smoothing
that is applied helps remove artifacts but cannot add any information.
To overcome this problem, a lot more statistics, different cleaning, smoothing
or re-sampling procedures might help.

• H2. The pieces of input data sliced into strokes are too short. The problem
might be that the gap (64ms) used to delimit the strokes is too short.
To overcome the problem, another setup of the selection algorithm would help.

• H3. Features modeled as random variables may be inadequate or incorrectly
chosen. There might be other quantities that would better describe movements.
Also, features created from the beginning, the middle and the end portions
might just produce artifacts and noise, than bring relevant information.
To overcome this problem, deep analysis of quantities and their relationships
would help. Better statistics would be also beneficial.

• H4. There may be too many features. This fact is partially linked to previous
hypothesis, but there is one more aspect: some features might be internally
statistically linked, so statistically they describe the same quantity.
To overcome this problem, the internal structure of features/markers needs to
be explored and understood.

Regarding the first hypothesis (H1), [4] uses a different smoothing algorithm. In [4],
before the smoothing spline is applied, the stroke’s input events are geometrically
interpolated to make points of equal unit distance. The interpolation was not
explored in this dissertation.
Regarding the second hypothesis (H2), strokes of [4] are longer and they finish
after the user goes through a whole predetermined path. Here, there is no ending
gap. If strokes were lengthened by accepting longer gaps, the approach used in
this dissertation would be closer to the one in [4]. This possibility is explored in
the experiment 10.3.4.
Regarding the third hypothesis (H3), results of the discussed experiment 10.3.1
contradict [4]. Features used in [4] and in this dissertation are similar, the majority
of features was adopted. A significant difference may be the usage of beginning,
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middle and end portions. Removing features of these portions is explored and
discussed in the experiment 10.3.3.
Regarding the fourth hypothesis (H4), the possible linkage in statistical properties
could be taken from the results of the entity 7 (see table 5). Here are all five feature
sets found by the experiment for this entity:

vE
n2, ω

M
4 , ω2 vn4, vE

n2, anS anD, dωE
0 , v

E
n2 vn2, vB

n2 dωM
0 , vn4, aM

nS

Features anS and anDmight be related, because spread (see chapter 9.2.5) describes
distance from the minimum to the maximum, as also the deviation similarly does.
Let us remember that feature is a random variable, so the relation between spread
and deviation can be seen as similarity in probability distribution in both markers.
The relation between anS and aM

nS resembles the previous situation, and maybe
more clearly. The first feature is the spread of all an values. The second feature
is the spread of the middle part of an values. If the distribution is symmetrical,
which might be a valid presumption for an, the features should have related
distributions. Removing possibly linked features is explored and discussed in the
experiment 10.3.2.

10.3.2 Repeatability of selection (similar features omitted)
This experiment is a restricted modification of the previous experiment 10.3.1.
The following features were removed from the previous experiment and were not
used to describe entities:
• All spread features qiS , qB

iS , q
M
iS and qE

iS , because they represent similar proper-
ties as deviations qiD, qB

iD, q
M
iD and qE

iD.
• Features qM

i0 and qM
i4 , because they are similar to qB

i4 and qE
i0.

• Features qM
i2 and qM

iD, because they are similar to qi2 and qiD.
The number of features used in this experiment decreased to 136 after this reduction.
This amount of features NFL is called a limited number of features or shortly limited
features in the rest of the dissertation text.
The experiment was run with the following parameters:
• training sets A+T

e were used to create entities and their features,
• tuning samples containing 40 consecutive strokes were randomly chosen in
each of the five runs of feature selection,

• strokes were ended if no movement occurred for at least 64ms,
• the configuration for the selection process was SFFS/dEER,
• five runs of feature selection for all entities produced 80 feature sets in total,
• the content of feature sets for each entity was compared—the experiment
produced 5 different attempts for each entity.
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Results are displayed in table 6. If the selection algorithm did not find the optimal
set i.e. the absolute ending criterion was not satisfied (see chapter 10.1), a × mark
was put into the cell.

Table 6 The comparison of feature sets size, 64-ms gap, limited features
entity run 1 ∩ run 2 ∩ run 3 ∩ run 4 ∩ run 5 ∩ of all

1 ×3 0 ×1 0 ×1 0 ×2 0 6 0

2 ×2 0 ×3 0 ×1 0 ×1 0 ×3 0

3 ×5 0 ×1 0 6 2 6 1 ×1 0

4 7 0 ×7 1 10 0 6 0 ×11 0

5 4 0 ×1 0 5 2 4 0 ×4 0

6 5 1 ×3 0 ×2 0 ×6 0 ×4 0

7 6 0 5 0 ×4 1 7 1 5 0

8 4 1 6 1 4 2 7 1 3 0

9 3 0 4 0 3 0 4 0 3 0

10 5 0 4 1 ×4 0 6 2 9 0

11 ×5 1 ×2 0 ×10 1 ×6 1 ×9 0

12 3 1 4 0 ×5 0 5 1 4 0

13 8 1 5 1 4 0 6 0 5 0

14 ×9 1 ×3 1 ×6 1 6 0 ×5 0

15 1 0 1 1 1 0 1 0 1 0

16 1 0 2 1 2 1 2 1 1 0

The results in this table are comparable to the results of experiment 10.3.1. The
conclusion is that omission of similar features did not improve the repeatability of
feature selection and therefore the corresponding tested hypothesis H4 (see page
88) is falsified by the result.

10.3.3 Repeatability of selection (reduced features used)
This experiment is an evenmore restrictedmodification of the previous experiment
10.3.2. All features related to the beginning, the middle and the end portions were
removed and not used to describe entities, in addition to all features removed in
the previous experiment. These are: qB

i2, q
B
i4, q

B
iD, q

M
i0 , q

M
i2 , q

M
i4 , q

M
iD, q

E
i0, q

E
i2, q

E
iD.
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The number of features used in this experiment decreased to 63 after this reduction.
This amount of features NFR is called a reduced number of features or shortly
reduced features in the rest of the dissertation text.
The experiment was run with these parameters:
• training sets A+T

e were used to create entities and their features,
• tuning samples containing 40 consecutive strokes were randomly chosen in
each of the five runs of feature selection,

• strokes were ended when no movement occurred for at least 64ms,
• the configuration for the selection process was SFFS/dEER,
• five runs of feature selection for all entities produced 80 feature sets in total,
• the content of feature sets for each entity was compared—the experiment
produced 5 different attempts for each entity.

Results are displayed in table 7. If the selection algorithm did not find the optimal
set i.e. the absolute ending criterion was not satisfied (see chapter 10.1), a × mark
was put into the cell.
The results in this table are comparable to results of experiments 10.3.1 and
10.3.2.The conclusion is that omission of features computed from beginning, mid-
dle and end portions of vector quantities did not improve the repeatability of feature
selection, and therefore hypothesis H3 (see page 88) is not valid.

10.3.4 Repeatability of selection (long strokes used)
This experiment is identical to the experiment 10.3.3 except that the stroke detector
was configured to use a 500-ms or 1000-ms gap. The experiment was run with
these parameters:
• training sets A+T

e were used to create entities and their features,
• tuning samples containing 40 consecutive strokes were randomly chosen in
each of the five runs of feature selection,

• strokes were ended when nomovement occurred for at least 500ms or 1000ms,
• the configuration for the selection process was SFFS/dEER,
• the selection process selected from NFR = 63 features,
• five runs of feature selection for all 16 entities and each gap produced 160
feature sets in total,

• the content of feature sets for each entity was compared—the experiment
produced 10 different attempts per entity sorted by their gap size into two
groups.

The results are displayed in tables 8 (500-ms gap) and 9 (1000-ms gap). If the
selection algorithm did not find the optimal set i.e. the absolute ending criterion
was not satisfied (see chapter 10.1) a × mark was put into the cell.
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Table 7 The comparison of feature sets size, 64-ms gap, reduced features
entity run 1 ∩ run 2 ∩ run 3 ∩ run 4 ∩ run 5 ∩ of all

1 ×1 0 ×1 0 ×1 1 ×2 1 ×1 0

2 ×1 0 ×2 2 ×5 0 ×1 1 ×1 0

3 ×1 1 ×3 2 7 1 ×1 1 6 1

4 1 0 ×4 0 ×3 0 ×4 1 ×8 0

5 ×6 2 ×5 0 ×1 0 4 3 ×11 0

6 ×6 0 ×1 0 ×6 0 ×1 0 ×2 0

7 4 3 6 2 4 1 3 1 7 1

8 ×3 0 3 0 2 1 2 0 2 0

9 ×4 0 3 0 5 2 ×6 1 6 0

10 8 1 ×3 1 5 1 ×4 2 ×5 1

11 7 2 5 2 3 1 ×3 0 ×2 0

12 5 2 3 1 4 2 ×5 2 ×5 0

13 ×8 0 ×5 0 ×8 0 ×4 1 5 0

14 9 1 ×4 0 ×1 0 ×4 0 ×6 0

15 1 0 1 0 1 0 2 1 2 0

16 2 1 2 1 2 1 3 1 2 1

The results in these tables are again comparable to all the related experiments
10.3.1, 10.3.2 and 10.3.3.
The first group of results of runswith 500-ms gap is similar to previous experiments.
There is no visible improvement when the results are compared to the initial
experiment 10.3.1. The second group of results of runs with 1000-ms gap is
different. Table 9 contains many fewer zeros, and more runs ended with finding
a good solution (which is indicated with no cross in the cell).
To further compare all five groups of repeated runs, the total size of all feature sets
fa =

∑
run1+

∑
run2+

∑
run3+

∑
run4+

∑
run5, the total size of all intersections

fi =
∑

run1 ∩ run2 + . . . +
∑

run4 ∩ run5, total size of common intersection
fc =

∑
∩ of all and total count of selections ended without achieving absolute

threshold f× =
∑
× sign was computed for all runs and everything was put into

table 10. This table also contains the number of used features NF and two ratios
that express relationships between sizes sums: fi/ fa and fc/ fa.
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Table 8 The comparison of feature sets size, 500-ms gap, reduced features
entity run 1 ∩ run 2 ∩ run 3 ∩ run 4 ∩ run 5 ∩ of all

1 5 0 ×1 0 ×1 0 ×4 1 ×5 0

2 3 0 2 2 7 4 7 0 2 0

3 ×4 3 ×5 2 3 1 ×3 2 ×7 0

4 ×1 0 ×1 0 ×1 0 3 0 ×2 0

5 ×5 1 ×6 1 ×7 1 4 2 6 1

6 ×1 0 ×1 0 ×1 0 3 0 ×6 0

7 2 1 3 0 3 1 2 0 4 0

8 3 2 3 0 2 0 2 0 3 0

9 6 1 5 0 3 1 4 2 5 0

10 ×5 0 ×4 0 ×4 3 ×5 2 ×10 0

11 7 4 ×10 1 ×1 0 ×4 0 ×1 0

12 3 2 5 1 3 1 3 1 3 1

13 4 0 3 2 3 2 4 2 3 0

14 ×3 2 ×5 2 ×6 2 ×2 1 ×6 0

15 1 1 1 1 1 0 1 0 1 0

16 ×1 0 ×1 0 ×1 0 ×1 0 ×2 0

This table reveals the following:
1. The total number of selected features fa decreases. The speed of this decrease
does not correspond to the speed of decrease in the number of features NF used
in the particular experiment.
The simplest interpretation is that the number of selected features likely de-
pends on something other than the number of used features, though some
small dependence is still visible. The last three lines use the same number of
used features and their fa is close.

2. The number of runs where a good solution was not found may be affected
by two trends: the first trend makes good selection difficult as the number
of features decreases. This trend corresponds to f× = 31, 32, 44 (38) for the
number of features NF = 228, 136, 63 (63).
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Table 9 The comparison of feature sets size, 1000-ms gap, reduced features
entity run 1 ∩ run 2 ∩ run 3 ∩ run 4 ∩ run 5 ∩ of all

1 ×4 1 4 3 6 3 4 0 4 0

2 3 1 2 0 4 1 2 1 2 0

3 ×3 1 3 1 3 2 ×6 3 ×6 1

4 6 3 4 2 4 3 7 2 ×2 1

5 5 1 3 0 4 3 4 3 6 0

6 ×5 4 ×6 5 ×6 2 ×2 0 ×1 0

7 2 2 2 1 2 1 2 1 2 1

8 3 3 3 2 4 2 3 1 3 0

9 4 1 3 1 3 1 3 0 3 0

10 2 2 2 2 4 2 3 2 4 1

11 ×4 2 ×9 3 4 2 ×6 4 7 1

12 2 0 2 0 2 1 5 1 2 0

13 2 1 2 2 2 1 2 0 2 0

14 3 1 4 1 3 1 3 1 5 1

15 1 1 1 1 1 1 1 1 1 1

16 ×1 0 ×1 0 ×1 0 ×1 0 ×12 0

Table 10 General comparison of repeated feature selection
experiment NF fa fi fc fi

fa [%] fc
fa [%] f×

10.3.1 288 371 58 1 16 0.27 31

10.3.2 136 340 31 0 9.1 0.72 32

10.3.3 63 296 51 4 17 1.4 44

10.3.4, 500-ms gap 63 275 58 2 21 0.72 38

10.3.4, 1000-ms gap 63 273 94 7 34 2.6 18

The second trend may be that prolongation of the ending gap makes selection
easier and more runs end with finding good solutions. This trend could be
visible in f× = (44) 38, 18 for gaps of (64) 500 and 1000 milliseconds.

3. Runs using the longest gap have the biggest intersections. In both absolute
and relative numbers, this is almost twice as good as runs using shorter gaps
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(64ms or 500ms): e.g. 94 vs. 58, 34% vs. 17% or 2.6% vs. 1.4%. It means
that selections, that used longer gap, found similar feature sets more frequently
than in other cases.

4. The difference between 10.3.2 and 10.3.1 is small. Also 10.3.3 is close to
10.3.4, when fa (and partially fc) is taken into account.

The second and the third points are in concordance i.e. longer gaps more likely
lead to finding good and repeatable solutions. This result also conforms to H2 (see
page 88): [4] was able to achieve stable results when long strokes (longer than
a second) were used, and this experiment 10.3.4 gives comparable results when
the end gap is 1000ms.
The outcome is important: short strokes, together with used feature extraction and
selection, are not sufficient to achieve results similar to [4] (see also the discussion
of results in the first related experiment 10.3.1), contrary to longer strokes whose
results are closer to what [4] researched.
The second outcome of these experiments concerns the number of features and the
gap length to use in further experiments. According to the fourth step above:
• the settings used in experiments with limited features can be omitted because
the result 10.3.2 is close to the experiment 10.3.1,

• the settings used in experimentswith reduced features (i.e. amaximally reduced
number of features) must be preserved because they are different to 10.3.1,

• 10.3.4 points out various results for 1000-ms gap, it also shows that 500-ms
gap do not differ at all from 64-ms gap (used in 10.3.1 and 10.3.3). Therefore,
only 500-ms and 1000-ms gaps will be further used,

• summed up, further experiments will explore four variants: all and reduced
features with gaps of 500ms and 1000ms lengths.

A relation between the gap duration and the length and of strokes (N and t) is
plotted in figure 25. Values N and t are computed as arithmetic averages from
all available strokes of all entities. The figure shows that for the gap within the
500ms–1500ms interval N increases more slowly than t. This observation could
be interpreted as that the improvement in results having 1000-ms gap is rather
linked to the duration of the stroke than to the number of stroke’s items. On the
other hand, the difference between N and t still looks too small to account for the
observed improvement. This topic is not further analyzed in this dissertation.
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Figure 25 Dependence of the stroke length
(items N and duration t) on the gap duration

10.3.5 The influence of the sample length on the selected features
This experiment was aimed at determining how the content of feature set develops
when the number of strokes mt changes in the tuning sample. The setup for the
experiment was:
• training sets A+T

e were used to create entities and their features,
• the experiment ran all 16 entities,
• tuning samples contained mt = 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100
consecutive strokes,

• the configuration for the selection process was SFFS/dEER,
• strokes were ended when nomovement occurred for at least 500ms or 1000ms;
these times were taken from the results of experiment 10.3.4,

• variants using all features (NFA = 228) and reduced features (NFR = 63) were
tested,

• in total the experiment executed 1536 runs in groups of the gap (two gaps),
entities (16 entities) andmt (12 lengths of samples). Half the runs used random
sample for each mt and the other half used the same, not random sample that
was gradually lengthened,

• from this amount of runs, results of entities 1 and 15 were chosen to present
their results.

These results are displayed in eight pairs of figures, each pair contains the same
entity. The left figure in the row contains results for samples that are not random,
while the right figure contains results for samples that are random in each run.
Columns of the figures represent features and rows correspond tomt. If a particular
feature was selected in a particular run, the box in the figure is painted in black.
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Each figure contains a legend inside it: m is the number of strokes in the tuning
sample (mt), e is entity, ‘p’ means features of the beginning/the middle/the end
portions, the letter ‘s’ means similar features, ‘r’ means random and ‘g’ means
a short (‘s’ = 500ms = 0.5 s) or long (‘l’, 1000ms = 1 s) gap.
The figures also contain information about the most frequent features:
• the column with the most frequent feature has a gray background (if the box is
not already painted in black), and the feature is given a number,

• the same number of the same particular feature is displayed in all other figures
that belong to the same entity.

If the column contains a numberwith× sign, it simplymeans that the corresponding
number of columns was shrunk.
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The following findings can be found in the results shown:
• The number of features in a set continuously evolves and decreases as mt
increases. This trend is visible as the diagram increases in steepness.

• Somewhere between mx = 10 and 30, the diagrams change. Below this mx,
feature sets usually contain many features, for example as shown in figure 31.
Above this mx, feature sets usually contain between one and four features.

• Random and non-random runs look similar and their results do not reveal any
substantial differences. The same applies to utilizing all or reduced features.
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• Different runs frequently produce the same most frequent feature.
• It is not clear whether the 500-ms gap or the 1000-ms gap is better. For entity
1, runs with a 500-ms gap (figures 26 and 27) found the feature 1 three times,
whereas runs with a 1000-ms gap (figures 28 and 29) found the only common
feature 7 only twice. For the entity 15, the results are the opposite: runs with
shorter gap never picked out the same feature, whereas runs with longer gap
succeeded in doing this in all four cases.

• In most cases mt = 60 means stabilizing the feature set. When mt is further
increased, the feature selection only rarely replaces features in the set.

The conclusions of the findings are:
• mt < 20 produces results with many different features. These results are not
repeatable and samples of these lengths cannot be used in feature selection.

• mt > 50 produces mostly repeatable results. The smallest value mt = 60 is
chosen in further experiments because it loads computing the least.

• The values 20 ≤ mt ≤ 50 sometimes works and sometimes does not. Whether
the descriptive features aremore prominent andmore easily detectable depends
on the entity. Due to this, values of mt from the range [20, 50] cannot be used
for feature selection either.
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• The difference between random and non-random samples is small. It means
that random tuning works just as well as pre-determined tuning and thus that
random tuning is capable of tuning up the identification system.

• The difference between runs utilizing all features and reduced features is also
small. The result confirms previous experiments, as shown in the discussion
related to the experiment 10.3.4.

• The experiment 10.3.5 partially supersedes experiments 10.3.1, 10.3.2, 10.3.3
and 10.3.4. It also confirms these experiments because this experiment also
shows that repeated runs may end with selecting identical sets of features.

10.3.6 Discussion and summary of feature selection stability
Experiments that tested feature selection focused on two main problems: if the
feature selection is able to repeatedly find informative and relevant features, and
how the number of strokes in the sample affects the selected feature set.
Regarding repeatedly finding relevant features, experiments revealed:
• The number of statistical quantities computed for markers is of low importance.
The experiment 10.3.1 using all available features produced similar results as
experiments 10.3.2 and 10.3.3, which used reduced features. This finding was
also confirmed with experiment 10.3.5.
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Figure 32 Dependence of the feature set on m, entity 15, reduced features, 1 s
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Figure 33 Dependence of the feature set on m, entity 15, all features, 1 s

The conclusion is that adding markers related to the beginning, the middle
and the end portions of vector quantities did not help. This conclusion is in
concordance with [4], where only basic markers were used and it worked.

• The length of the stroke is of big importance. Prolonging the ending gap
greatly improved feature selection. The experiment 10.3.4 discovered this as
fact, although it did not explain why.
This outcome is also in concordance with [4]. According to this dissertation,
feature selection gives good results when the average stroke duration is approx-
imately two seconds. This duration is nearly the same as [4] discovered.

Regarding how the mt affects the selected feature set, experiment 10.3.5 revealed:
• Single strokes cannot be used to select features. At least 20 strokes in a sample
are needed when cases are favourable and at least 60 strokes are needed
generally in order to make feature selection work.
Taking into account the discovered average stroke duration (2 s), the absolute
theoretical nett minimum time needed to build an entity is at least 2 minutes
of tracking. This time is surprisingly short, but it is simply theoretical: data
used in this dissertation shows that suitable strokes only appear a few times
a minute when the person is instructed to continuously use the mouse. General
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computer work produces suitable strokes with even less frequency so it may
take considerably longer to grab enough data.
This outcome is in partial concordance with [4], because [4] succeeded when
using samples containing only 10 strokes. A possible explanation could be that
all [4]’s strokes are long (at least a second), whereas strokes in this dissertation
are often shorter.

• Randomness of the tuning sample is not important, which is why the identifi-
cation system can be successfully tuned with randomly selected samples.

The overall conclusion of experiments relating to feature selection is that the identi-
fication system used in this dissertation (including data grabbing, feature extraction
and feature selection) is sufficiently capable of building entities representing iden-
tified persons.

10.4 The most often selected features
The feature selection selects features that are relevant and informative for the
particular person. It means that each person is described with their own set of
features that are likely not shared with other people. On the other hand, the
movements needed to control the mouse-like device are similar for all people
(because intentions to control something inside a GUI are similar) and the selected
feature sets could therefore be more common.
The previous experiments ran a sufficient number of feature selections to prepare
enough data to analyze the features that were selected. Runs with these particular
parameters were chosen:
• training sets A+T

e were used to create entities and their features,
• the experiment ran all 16 entities,
• tuning samples contained 60 consecutive strokes,
• the configuration for the selection process was SFFS/dEER,
• the gap was set to 1000ms,
• in total 640 runs (40 runs for all 16 people) were used.
The results are displayed in table 11.
The contribution represents the average appearance of a feature of the particular
quantity in the result of the single experiment run. This single experiment run
carries out 16 individual feature selections, one selection for each individual entity.
Examples:
• the contribution 1.7 for j means that the marker is likely to appear once or
twice in each run (one or two of 16 people is likely to use this marker),

• the contribution 0.73 for an means that 11 out of 15 features linked to an is
likely to appear in each run.
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Table 11 The contribution of features, frequency of selecting the features
quantity sri ti csi sd vd r j x

contribution 0.43 0.85 1.4 1.2 0.38 1.5 1.7 0.63

quantity y cs dcs v dv d2v vn φv

contribution 0.50 0.28 0.73 0.50 0.38 0.68 0.55 0.25

quantity ω dω ca a an φa

contribution 0.18 0.55 0.10 0.25 0.73 0.56

Contributions larger than 0.65 (what is an average contribution) are printed in bold
in the table. Quantities related to these contributions are considered typical. The
evaluation of the results is:
• typical features represent either overall scalar quantities related to straightness
(like integral curvature csi or inverted straightness r) or vector quantities related
to turning (like normal acceleration an or jerk d2v),

• the opposite, i.e. less frequent quantities are curvatures and velocities (both
angular and translational).

10.5 Validation of feature selection
Previous experiments revealed that feature selection can work successfully and
can produce repeatable results. This chapter goes further. First of all, this chapter
aims to answer the third question of chapter 10.3 (see page 86): how does the
identification system, tuned for some sample length, work with samples of various
lengths? Next, the proposed experiments should check the identification system
in numerous runs with the goal of proving that previous findings are valid.
All proposed experiments measure the identification system as a whole. It is the
first time this dissertation uses such an entire measurements whereas previous
experiments were targeted on particular problems of the system. The metric used
to measure the system is the EER (see chapter 5.2.4) because it is the general
metric of first choice when measuring a quality of the identification system.
The common settings for all validation experiments is as follows:
• the length of the sample (the number of strokes in the sample) used to tune the
system is 60 strokes (see chapter 10.3.6),

• the duration of the gap is 500ms or 1000ms,
• the length ms of test samples changes from 1 to 200, and all lengths are tested
100 times; each sample is selected randomly,

• variants using all and reduced features are explored,
• the EER of the entire system is measured, as well as the EER of each entity.
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10.5.1 Dependence of the EER on sample length
Two figures displaying development of the EER in dependence ofms are presented,
figure 34 shows the result for all features and figure 35 show the result for reduced
featues. In both figures gray lines delimit ±σ of the EER value.
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Figure 34 Development of the EER, all features, all entities
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Figure 35 Development of the EER, reduced features, all entities

The difference between figure 34 and figure 35 is not in concordance with findings
of previous experiments (see the discussion in chapter 10.3.6). It is visible that
runs using all features (the figure 34) have results that are twice as good as runs
using reduced features (the figure 35).
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Two possible explanations for this observation are formulated in the following
hypotheses:
• H5. The difference could be caused simply by the size of the set of features,
and previous experiments did no reveal this fact.

• H6. The second explanation could be that the system failed to identify some
entities, and the corresponding error was so big that it significantly altered
the overall mean value (H6). This second hypothesis may be supported with
a large σ visible in both figures—effectively the uncertainty of the computed
EER is more than 300 % in both cases.

The experiment 10.5.2 was designed in order to realize which hypothesis is valid.
In order to demonstrate and compare the worst and the best entity of figure 34, the
best entity 15 and theworst entity 16 are extracted to standalone figure 36. Note that
the figure has a y-axis scale that is different to other figures in this experiment. The
principal outcome of these results is that the identification system did not properly
tune some entities. Previous experiments may have indicated this behavior (e.g.
the experiment 10.3.4 for entity 16), especially in the number of runs that did not
satisfy the absolute ending criterion.
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Figure 36 Development of the EER, all features, entities 15 and 16

Figure 35 also shows a small bump for ms around 60–80. This could be explained
as oscillation after exceeding the number of strokes (60) that the system has been
tuned for.
The improvement of identification that appeared after prolonging the stroke-end
gap has not been explained. Because it will not be further analyzed in this
dissertation, the runs with shorter gaps were additionally carried out as the last
insight into the problem. The result is displayed in figure 37.
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Figure 37 Development of the EER, all features, all entities, 500-ms gap

The comparison of the figure 37 with figures 34 and 35 reveals that if the system is
tuned with shorter strokes, then it has worse performance. This supports findings
of the previous experiments (e.g. 10.3.4). Also, the same trend of worsening the
ERR for ms > mt as in figure 35 (the bump after mt), is visible in figure 37.
The overall conclusion of this experiment is that the identification system is able
to build entities and use them to identify unknown samples, though the measured
standard deviation of results is unacceptably high.

10.5.2 Dependence of the EER on sample length for selected
entities

The experiment 10.5.1 revealed that the used identification system does not create
suitable entities for all people, and consequently, that the system is not able to
identify all people.
In order to learn more, an analysis was carried out using 25 independent tuning
runs with various settings, grabbed from previous experiments. In total, 400 tuned
entities were analyzed, and the analysis tracked if the ERR for particular entity
decreased to 0. This result, i.e. the count N0 of zero ERRs for all entities, is shown
in table 12.

Table 12 The count of runs achieving the ERR = 0, all entities compared
e 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N0 3 13 3 0 8 2 16 20 20 11 4 16 25 3 25 0

× × × × × × × ×
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The last row of the table contains × signs for entities that achieved EER = 0 in at
least 50% of cases. These entities were selected and used for feature selection in
this experiment.
There are six entities (1, 3, 4, 6, 14 and 16) that did not achieve EER = 0. This
does not immediately mean that their results were bad (except for entity 16 whose
results are truly bad, see figure 36), because it is rare to have EER = 0 in the
identification system. However, the system is capable of tuning properly for some
entities and therefore there is a chance it could be tuned for all entities. Analyzing
the causes of this fact is not carried out in this dissertation.
Results from experiment runs with a reduced number of entities are displayed in
figures 38 and 39. Because the reducing the number of entities also changed their
mutual relations, the system was completely tuned from the beginning using only
the selected entities.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  10  20  30  40  50  60  70  80  90  100  110  120  130  140  150  160  170  180

EER

mj

mean 
mean ± σ

Figure 38 Development of the EER, all features, selected entities

Both of these results are better than results in figures 34 and 35, both in terms of
standard deviation σ and convergence towards zero. σ is approximately 0.15, and
all selected entities in both runs achieved EER = 0.
Both variants converged to zero around ms = 80. This is about twenty strokes
more than the system was tuned for (= mt).
The overall conclusion is that we can consider the identification system to be
functional in the expected way, if only correctly tuned entities are used. The
result falsifies H5 and supports H6 (for both H5 and H6, refer to page 104). The
convergence to minimal EER appears when samples are longer than the length of
tuning samples (ms > mt).
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Figure 39 Development of the EER, reduced features, selected entities

10.5.3 Discussion of feature selection validation
The results of feature extraction and feature selection was validated by measuring
the ERR of the whole identification system. Measurements of the EER were
repeated 200 times for each entity, with a continuously increasing number of
strokes in the test sample.
The validation results are:
• The identification system in this dissertation in principle works, including
feature extraction and also feature selection. The best EER the system achieved
was approximately 0.03, which is comparable to [4], although this dissertation
achieves this EER level in twice as long time.

• The identification system is not able to prepare equal quality entities, approxi-
mately half the entities are suboptimal. The reason for this is unknown and it
needs further research which is beyond the scope of this dissertation.
The problems with tuning entities manifest mostly in a big standard deviation
of the measured results.

• In order to test the identification system in theoretically ideal conditions, the
badly tuned entities were removed, and the system was again tuned and then
validated. The resulting behavior corresponded as expected and validated the
identification system—the decreasing EER converged to a minimal zero value
when the number of strokes in the test sample exceeded the number of strokes
in tuning sample.

• The observation further confirmed that longer strokes give better results.
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• It was also revealed that in real case (when all entities were used), the number
of used features does matter: the results displayed in figure 34 are almost twice
as good as the results displayed in figure 35. This observation is contrary to
previous results discussed in chapter 10.3.6 at page 99.

The overall conclusion from this validation is that the used identification system
works, that mouse-like devices can be used to identify people, and that there are
problems with describing some people. These problems effectively prevent the
system from being used. Further research into this field is needed.

10.6 Comparison of data sets
As described in chapter 8.3, six data sets were grabbed from each entity. This
chapter and the experiment it contains, compares these data sets using the same
method as in previous experiment 10.5.
Note that data sets of user’s individual environments Ee cannot be compared to one
another. This is because these data sets always only contain information related to
a single user, and therefore how this data set accepts or rejects other users cannot
be evaluated. Due to this fact, the synthetic environment E s (composed of data
sets De and Ae) is used in place of environments Ee.

10.6.1 The experiment setup and its results
The experiment ran consecutive feature selections for each data set and for each
entity and used the following settings:
• the number of strokes in the sample used to tune the system was 60 strokes
(see chapter 10.3.6),

• the duration of the gap ending the strokes was 1000ms,
• the length ms of the test samples changed from 1 to 200, and all lengths were
tested 100 times; each sample was selected randomly,

• all available features were utilized,
• the EER of the whole system was measured.
The results are displayed in three figures according to table 13. The left part of
each figure contains the result for the driver data source (D−, D+ or De), and the
right part contains the result for the API data source (A−, A+ or Ae).

Table 13 Mapping of data sets to figures, comparison of data sets
data set D− A− D+ A+ De Ae

figure 40 L 40R 41 L 41R 42 L 42R
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Figure 40 Development of the EER, D− on the left, A− on the right
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Figure 41 Development of the EER, D+ on the left, A+ on the right

10.6.2 Discussion of differences in data sets
The experiment results displayed in all three figures 40, 41 and 42 can be summed
up as follows:
• API data sets (figures 40 R, 41 R, 42 R) always achieved better results than
driver data sets (figures 40L, 41L, 42L) though differences for both controlled
environments E− and E+ were small.
A possible explanation for this could be that the brain controls the position it
can see, and that it cannot see the modifications of coordinates made by the
user experience filter.
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Figure 42 Development of the EER, De on the left, Ae on the right

This fact also replies to the question in chapter 6.4.2. API data sets have better
results which emphasizes that the movement-eye approach is preferred to the
movement-measurement approach (see page 46).

• The results from the controlled non-accelerated environment E− displayed in
figure 40 looks smoother than other results.
This fact could be explained with the absence of the user experience filter: if
the user experience filter is not used, the brain sees the exact position of the
hand. The mouse cursor accelerates according to the hand, errors in hand
positioning correspond to errors in mouse cursor positioning, and the brain has
everything in concordance.
On the other hand, if the filter is used, it can produce large and sudden changes
to the coordinates. The filter amplifies acceleration so that a small error in hand
positioning leads to a larger error in mouse cursor positioning. This amplified
error could then be the source for the noise and bumps in the results.
Note that better mouse placement precision, resulting in a smoother EER curve,
does not necessarily mean better distinguishing between entities.

• The best result of all is displayed in figure 42R which corresponds to the data
sets Ae. There is also a big difference between results displayed in figures 42L
(datasets De) and 42R (datasets Ae).
A likely explanation of this observation is that users use mouse devices most
naturally in their own environments; that they are accustomed to their own
combination of the mouse, the computer and the mouse settings. In such case,
controlling movements is learnt with long-term training, done best by the brain.
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The bad result of the data setsDe shown in figure 42L supports this idea. When
the brain is well-trained to a familiar environment, it fully overcomes the user
experience filter and therefore the driver data corresponds worse to regulation,
and consequently the driver data corresponds worse to the features.

The overall conclusion of data set comparison is that what the brain sees is more
important than the real measured coordinates. This is because results are better
from data sets using the user experience filter. However, the identification system
is also able to tune entities to driver data sets.

10.7 Summary of feature selection
Feature selection is the second step to building entities that represent identified
people. The primary goal of feature selection is to find the combination of features
that best describes a particular person.
The feature selection algorithms were explored first. Two variants using three
metrics were compared, and the combination of SFFS and dEER was chosen. SFFS
helps with overcoming the nesting effect that appears in measured data, and dEER
utilizes available information better than EER/polyline metric.
Next, analyses of variants using various numbers of features, using various lengths
of strokes, and using various numbers of strokes in the sample were carried out.
The following was discovered:
• more features does not mean better results (the finding is later overcome),
• longer strokes give better results than shorter strokes, the length of strokes was
expressed as the time gap separating one stroke from the following stroke,

• sets of selected features start becoming stable when the sample contains ap-
proximately 20 strokes, and can be considered stable when the sample contains
more than 60 strokes,

• the used method is capable of finding features that describe individuals well.
The next research phase into feature selection focused on the use of entities in the
context of the complete identification system. Experiments carried out revealed
that the identification system is principally capable of identifying people. The
following is important to point out:
• using more features gives better results, contrary to the result mentioned above,
• in some runs the identification system was not capable of creating proper
entities for all people. This fact prevents the system from being functional and
this problem needs be further explored.

The last part of researching feature selection focused on comparing available data
sets. These experiments discovered that data sets using displayed coordinates lead
to better results than data sets using measured coordinates.
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11 REUSABILITY OF DATA SETS
All previous experiments focused on forming representations of people, or focused
on analyzing results achieved with a single data source. These experiments always
used entities tuned for someparticular data source and compared themwith samples
created from the same source.
The next two chapters will explore the behavior of the used identification system
when the tuning and testing data sets differ. The goal of such cross-data set compar-
ison is to learn more about reusing tuned data in various environments. Reusability
is the key parameter affecting identification system operation scenarios.
Experiments carried out in this chapter copy arrangements used in other validation
experiments, as in experiments 10.5 and 10.6.

11.1 Reusing data sets of different data sources
This experiment analyzes how the identification system can identify an entity
when the sample is computed with data from a different data source of the same
environment. This scenario is unlikely because both data sources are available in
both environments and the selection algorithm can always select the correct source.
Notwithstanding this fact, the experiment is still useful because it can shed a light
on how similar data from different data sources are.
As in the experiment 10.6, the synthetic environment E s is used in addition to
controlled environments E− and E+.
The experiment used the following settings:
• there were 60 strokes in the sample used to tune the system,
• the duration of the gap was 1000ms,
• the length ms of test samples changed from 1 to 200, all lengths were tested
100 times; each sample was selected randomly,

• all features were utilized,
• the EER of the whole system was measured.
Results from this experiment are displayed in three figures according to table 14.
The left part of each figure contains results of matching the driver data source
(D−, D+ or De) with the corresponding API data source (A−, A+ or Ae). The right
part of the figure contains the opposite, i.e. matching the API data source with the
samples of the driver data source.
The results show that entities do not match well with samples from different data
sources. This conclusion is also supported by the results of both non-accelerated
variants A−←? D− and D−←? A− (see figure 43): convergencies of the driver data
and of the API data in the environment E− are almost identical because there is no
user experience filter in the data flow path. Therefore tuning with both A− and D−
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Table 14 Reusing data of different data sources, mapping data sets to figures
tuning data set D− A− D+ A+ De Ae

testing data set A− D− A+ D+ Ae De

figure 43 L 43 R 44 L 44 R 45 L 45 R
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Figure 43 Development of the EER, D−←? A− on the left, A−←? D− on the right

should produce almost very similar entities that should match with data from both
sources, just as can be seen in figure 43.

11.2 Reusing data sets of different environments
This experiment analyzes how the identification system is capable of identifying
an entity when the sample is taken from different environment. The data source
type (API or driver) is preserved.
This scenario is typical for identification systems whereby they use various input
devices and/or their settings. The identification system can only work if tuned
entities can successfully match with any sample from any input device.
As in the previous experiments 10.6 and 11.1, the synthetic environment E s is
used in addition to environments E− and E+. The environment E s best represents
mixture of devices and samples that can be expected in the real system.
The experiment used the following settings:
• there were 60 strokes in the samples used to tune the system,
• the duration of the gap was 1000ms,
• The length ms of test samples changed from 1 to 200, all lengths were tested
100 times, each sample was selected randomly,
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Figure 44 Development of the EER, D+←? A+ on the left, A+←? D+ on the right
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Figure 45 Development of the EER, De←? Ae on the left, Ae←? De on the right

• all features were utilized,
• the EER of the whole system was measured.
Results are displayed in three figures according to table 15. The left part of each
figure contains the result of matching the driver data sources (D−, D+ or De), and
the right part of the figure contains the result of matching API data sources (A−,
A+ or Ae).
The results displayed in all these figures show that entities tuned in some environ-
ment do not at all match data from other environments. The best results have the
ERR close to 0.35 and this value is unacceptably high. The standard deviation σ
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Table 15 Reusing data of different environments, mapping data sets to figures
training environment E− E− E+ E+ E s E s

testing environment E+ E s E− E s E− E+

figure 46 47 48 49 50 51
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Figure 46 Development of the EER, E−←? E+, D on the left, A on the right

of the results is also unacceptably high; its value is on average less than σ of the
previous experiment 11.1, but it is still too big.

11.3 Discussion and summary of reusing data sets
Two experiments were designed and carried out in order to explore how tuned
features are reusable in various environments. The first experiment 11.1 explored
what happens if test samples are from different data source (i.e. driver or API, see
chapter 6.4.2). The second experiment 11.2 explored how successfully the entities
are identified in samples taken on a different computer and with a different mouse.
Both experiments failed to produce acceptable results. Replacing the source of
data worked only in non-accelerated environment where the result was expected.
Replacing the environment did not work in any case—the best EER achieved was
approximately 0.35.
The feature selection algorithm was able to form good entities, but when these
entities were matched with data that the entities were not tuned for, the entities
were not identified.
This result could be explained for example with:
• Data sets from different environments are incompatible.
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Figure 47 Development of the EER, E−←? E s, D on the left, A on the right
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Figure 48 Development of the EER, E+←? E−, D on the left, A on the right

The information content of data sets is probably not the cause of this in-
compatibility because referenced prior research shows that data from various
environments can be mixed (at least in some cases).
A possible source of incompatibility may be the feature selection. Compared
to [4], this dissertation uses similar features, but the data processing process
differs.
In order to confirmor disprove this explanation, a thorough analysis of features’
forming and selection would help.

• The used feature selection algorithm might have strong tendency to search for
local extremes.
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In such case, features that perfectly fit the given training data set would be
selected, but some important subtle details could be passed over. If these
subtle details were not passed over, it could lead to better feature reusability,
because the feature selection could take advantage of these subtle details to
find better (perhaps global) extreme.
The observation might be supported with the results of experiment 10.3, see
the discussion in chapter 10.3.6. Repeated feature selections frequently found
appropriate solution that was different from other appropriate solutions.
Further experiments could either confirm or disprove this explanation by focus-
ing on the structure of the feature space and on its local and global minima.
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• The environments and the used data sets contained too little information for
proper tuning.
This idea might be supported with results from experiment 10.6, displayed in
figure 42R. This figure shows the best ever result achieved, even though the
result was obtained for combined environment E s that consists of unrelated
data sets. The heterogeneity of information content of E s could be the reason
for achieving such a good result.

The overall result of cross-data set comparison is that the identification system
used is not able to identify people across different environments.
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12 DISSERTATION OUTCOMES
The outcomes of this dissertation are summarized in this final chapter, together
with a top level discussion of the achievements. There are also references to the
corresponding detailed discussion relating to the each goal.

12.1 Discussion of goals
Deep analysis of feature selection and metrics
Feature selection algorithms and metrics were researched in detail in chapter 10.2
and in entirety in chapters 10.3 and 10.5. Two algorithms were analyzed (SFS and
SFFS, see chapter 5.3.2), and a new metric dEER was developed in chapter 5.2.5
for faster comparison of the quality of systems and system variants.
The main results are:
• Measured data representing mouse-like device movements is sensitive to the
nesting effect. The simple SFS algorithm is not sufficient and more advanced
algorithms need to be used like SFFS.

• The newly developed metric dEER can replace the traditional computing ERR
and it has potential to replace the EER at all.

• The combination of the SFFS algorithm and the dEER metric is, in principle,
capable of searching features that describe a personwell. Unresolved problems
persist so the feature selection did not find the solution in all situations.

• The chosen approach of selecting features has big computational time complex-
ity and for a large number of people it may be less usable.

This particular dissertation goal has been successfully fulfilled.
Chapters containing discussions relating to this goal are: 10.2.1, 10.2.3.
Enhancement of former work for unrestricted movements
The former work [4] was selected due to the fact that it used similar procedures
and methods. [4] expects users to direct the mouse along a pre-determined path,
this dissertation does not restrict user’s movements in any way. The enhancement
of [4] was discussed in sections throughout the entire content of this dissertation,
for example in chapter 10.3.6.
The main results are:
• It is vital to extend the principle of the approach used in [4] to allow free
movements. The identification system used in this dissertation is generally
able to identify people.

• Experiments in this dissertation revealed that allowing unrestrictedmovements
may require longer pieces of information than needed in [4].

This particular dissertation goal has been fulfilled.
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Chapters containing discussions relating to this goal are: 10.3.6, 10.5.3.
Comparison of two methods of obtaining mouse-like device data
The operating system offer information from mouse-like devices in two forms,
raw and adjusted. Both forms were described in chapter 8.2 and compared in
experiment 10.6.
The main results are:
• Both data sources are sufficient for identifying people, but they are not inter-
changeable.

• Measured, adjusted data read from the API data source gives better results
than raw data read from the driver data source. This finding means that the
movement-eye model of controlling the mouse, explained in chapter 6.4.2, is
more likely.

This particular dissertation goal has been successfully fulfilled.
Chapters containing discussions relating to this goal are: 10.6.2, 11.3.
Exploration of relationship and influence of various user environments
In order to analyze the influence of various environments, each user was instructed
to produce data in three different arrangements. These were described in chap-
ter 8.1 and analyzed in experiment 11.2.
The main result is that the data from different environments is unrelated in this
dissertation. This observation in principle disallows usage of the dissertation’s
identification system.
This particular dissertation goal has been fulfilled, but the obtained results are
unsatisfactory.
The chapter containing discussion relating to this goal is: 11.3.

12.2 Contribution to science and praxis
Evaluation of the importance of the selected features
According to experiment 10.4, the following features have greater importance than
others (for the definitions of quantities, refer to chapter 9.2.6):
• The features relating to turning. These are, for example, normal acceleration

an or jerk d2v.
• The features relating to the straightness. These are, for example, inverted
straightness r or jitter j.

Overall, the finding means that mouse-like device movements are distinguishable
due to changes of direction rather than due to changes of speed. In other words
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it is probably more important for the brain to control the final movement target,
rather than to control the progress of the movement.
This finding may help with further research into principles of controlling mouse-
like device movements.
Improvement of the feature selection process
This contribution is linked to the first goal of this dissertationwhich is deep analysis
of feature selection and metrics. The main outcome regarding contributing is an
invention of a novel metric dEER that can replace the traditional EER.
dEER is a measure that effectively measures the quality of the identification system,
and which is equivalent to the EER. dEER has two advantages over the EER:
• It can be computed directly from measured genuine similarities and impostor
similarities. This means no curves need be constructed nor intersected in order
to compute the dEER.

• The computation of dEER is fast. This means that repetitive tasks requiring
comparison of performance of system(s) can be significantly sped up.

You can find more details in chapter 5.2.5.
General contribution
This dissertation uses the classical approach to resolve the feature selection and
the classification problem. This might be considered regressive because current
general research preference is given to modern artificial intelligence and soft-
computing techniques (like in [12] and onwards).
The author believes that both approaches—classical and soft-computing—do not
contradict, that they complement one other, and that both benefit from each other’s
achievements.
This dissertation adheres to this idea and attempts to bring out deeper understanding
of behavioral identification systems utilizing the classical approach, with the hope
that discovered problems and bottlenecks, and also results, can be addressed and/or
overcome with soft-computing methods.

12.3 Proposals for further research
This dissertation has discovered difficulties and various problems during exper-
imentation that have not yet been resolved. In order to continue research, the
following topics need further exploration:
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• The reliability of measurements. According to experiments, the data is scat-
tered and likely undersampled. Better filtration and extraction would be useful.

• The suitability of selected features. Some information about features impor-
tance has been discovered, but thorough statistical and/or sensitivity analysis
would discover more.

• The quality of the used probabilistic model of features. Quality improvement
could either mean improvements in random variables, or improvements in the
modeling probability distribution itself.

• The replacement of feature selection algorithm with different and/or a stochas-
tic algorithm that can overcome existing big computational complexity.
Some works utilizing soft-computing techniques was already presented, e.g.
[12], but these works used artificial intelligence for the entire identification
algorithm itself, not only as a solution for a particular partial task (like the
feature selection).

• The space of the features, from which the feature selection selects the relevant
features. The feature selection was able to find many correct solutions in
many experiments, but these results only weakly correlated. Consequently,
the repeatability and the convergence of feature selection is not good.

• The common information of the entity that is shared across various environ-
ments. The experiments in this dissertation have not succeeded in discovering
this common information. Revealing this information is needed in order to
enable the used identification system to work in real conditions.
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13 CONCLUSION
How to identify people using mouse-like input devices has been researched for
more than 12 years. During this time, many works have tested a few vital ap-
proaches and have proven that mouse-like device can be used to identify people.
After analyzing various published papers, this dissertation identified some general
methodological omissions, and has not found any attempt to reproduce results.
Two existing methodological problems are prominent: at the first, identification
results are insufficiently tested on more various computers, so it is not known
if a particular person would be identified on all computers and, for the second,
operating system offers multiple methods of obtaining mouse coordinates and it is
not known which method works well and which method works badly.
Analysis of research also revealed that only one paper (as far as the author knows)
has tried to evaluate selected identification features with the aim of uncovering
dependencies in the data and their hidden meanings.
Aware of this, this dissertation provides brief theoretical backgrounds and proposes
experiments and research which would help improve the above-mentioned weak-
nesses. In particular, one prior work was chosen for enhancement and two areas
of experiments were designed and carried out: experiments aimed at analyzing
and improving feature extraction and feature selection processes, and experiments
aimed at comparing identification results obtained in various environments. All
experiments were designed and carried out by the author.
Experiments aimed at analyzing and improving feature extraction and feature selec-
tion improved the processes by overcoming the nesting effect and by developing
a new measure for comparing the EERs. Simultaneously, the experiments proved
that enhancements applied to the prior work are possible and that this derived
enhanced method is also in principle able to identify people.
Experiments aimed at comparing various environments revealed that the identifi-
cation system used is not able to overcome differences in environments, and that
further research into the field is needed.
This is not the only finding which needs continuing research. Due to this, there
are all discovered and yet unresolved problems summarized at the end of this
dissertation, and proposals for the further research are suggested.
The general overview concerning this dissertation’s goals is that three out of four
particular goals (the analysis of feature selection, the enhancement of former work
and the comparison of two sources of data) were positively fulfilled, and that one
goal (exploring the relationship of various environments) was fulfilled negatively
without achieving the presumed estimated results.
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