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ABSTRAKT

Molekulova dynamika simuluje chovani systémt na zakladé tfeSeni pohybovych rovnic
jednotlivych atomt, pfi¢emz vychézi z parovych vazebnych a nevazebnych interakci mezi

v

molekulové dynamiky stale ¢astéji vyuzivany ke studiu struktury a vlastnosti makromolekul.

Cilem prace je popsat vliv riznych iontii na strukturu hyaluronanu na zaklad¢ simulaci
v programu NAMD, navrhnout charakteristiky nahodného klubka, které¢ by mozné srovnat
s experimenty, a tyto charakteristiky nasledn¢ namétit pomoci dostupnych experimentalnich

metod.

Kli¢ovéa slova: molekulovd dynamika, polysacharid, gyra¢ni polomér, hydrodynamicky

polomér

ABSTRACT

Molecular dynamics is a technique for computer simulations of complex systems, based
on the bonded and non-bonded interactions between all pairs of atoms. These methods are
more and more often used to investigate the structure and properties of molecules,

because computer modelling is faster and less expensive than real experiments.

This thesis is focused on hyaluronan-ions effects using the molecular dynamics software
NAMD. Appropriate characteristics of hyaluronan random coils ought to be suggested,

calculated from simulations and measured using available experimental methods.

Keywords: molecular dynamics, polysaccharide, radius of gyration, hydrodynamic radius
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INTRODUCTION

Hyaluronic acid is a natural, non-linear, high molecular weight polysaccharide that
has a high potential for the future in science and for humanity itself. Its origins date back
to the 1930s, when hyaluronic acid was not yet sufficiently researched material. From the
beginning, hyaluronic acid only served as a substitute for egg white in bakery products.
Today, thanks to science and evolving technologies and knowledge of preparation or new
modifications, it has begun to be used in various areas of human life, such as in tissue
engineering, wound healing and burns research in cosmetics. Great hopes are being put into

the research of anti-cancer treatment using hyaluronic acid or 3D printing.

Due to the development of various computing technologies, it is possible to study
hyaluronan under experimentally poorly accessible conditions such as extreme temperatures
and pressures and to learn more about the interaction of hyaluronan with other substances.
Subsequently it is possible to study properties of the macromolecule such as a particle size.
To study hyaluronan, a method of molecular dynamics can be used, which simulates the time
evolution of physico-chemical properties of a given system with a large number of degrees
of freedom based on the numerical solution of the equations of motion of individual atoms.
Molecular dynamics methods are less expensive than real experiments, so they can be an

interesting supplement of experiments.

This master’s thesis describes the influence of various ions on the resulting structure
of the HA macromolecule based on molecular dynamics simulations in NAMD software and
experiment, using the method of dynamic light scattering. The main goal of this thesis is to
find and perform a possible comparison between these two methods. There is a certain
advantage that the NAMD software package is freely available for students and academics

and there exists the MetaCentrum, which is also freely available for academics and students.
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I. THEORY
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1 HYALURONIC ACID

Hyaluronic acid (HA) is a high molecular weight biopolysaccharide (kDa — MDa)
uncovered by Karl Meyer and his assistant John Palmer in the vitreous of bovine eyes
in the 1930's. HA is a naturally occurring biopolymer in bacteria and higher animals

including humans, which has important biological functions [1].

1.1 Biological functions and applications

HA primarily appears in extracellular and pericellular matrix. It can be found in most
connective tissues and is specifically concentrated in synovial fluid, the vitreous fluid
of the eye, umbilical cords and chicken combs. Almost half of the human body’s HA occurs

in skin with most of the HA situated in the intracellular space, where it may reach 2.5 g/1[2].

One the most important biological functions of the HA is elastic stability of liquid
connective tissues such as articular synovial and eye glasses. Furthermore, HA controls
tissue hydration and water transport, supramolecular assembly of proteoglycans in the
extracellular matrix, and numerous role-mediated receptors in cell cleavage, mitosis,

migration, tumour development and metastasis and inflammation.

The other important role in our body is to bind water and lubricate moving parts of the
body, such as joints and muscles. Due to its consistency and tissue-friendliness it can be used

in skin care products as an excellent moisturizer.

HA is one of the most hydrophilic molecules in the nature and so it is a natural
moisturizing substance. HA with a unique viscoelastic nature, together with its
biocompatibility and non-immunogenicity, is important for use in many clinical

applications, including articular arthritis replacement [1].

Another important function of HA is a protection between the underlying tissues
and the hostile environment. HA plays a role of a scavenger of free radical generated by the

ultraviolet rays from sunlight [2].

The future of hyaluronic acid is probably mostly associated with tissue
engineering, 3D technology and nano spinning. The use of a dual-cross-linking hyaluronic
acid system as a printable hydrogel ink, which encompasses both shear-thinning
and self-healing behaviours through guest-guest bonding as well as covalent cross-linking

for stabilization using photopolymerization. The spinning process has emerged from
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technologies that have long been known in the textile industry - from wet spinning and fiber
drawing. Based on these known processes, a new technological process has been developed.
The hyaluronic acid polymer initially enters the wet spinning process, during which it firstly

dissolves in a water bath and then precipitates in the anti-solvent to form a fiber [3, 4].

1.2 Physical and chemical properties

It has been reported that HA in aqueous solution passes from the Newtonian to
non-Newtonian characteristics with increasing molecular weight, concentration, or shear
rate. In addition, with higher molecular weight and concentration of HA, the viscoelasticity
of the solutions increases. The viscoelasticity of HA in aqueous solution is pH and ionic
strength dependent. HA pKa values are about 3.0 [5], and therefore the change in pH affect
the ionization of HA chains, and the subsequent change in ionization changes the
intermolecular interaction between HA molecules that alters the rheological properties of the

compound.

From a chemical point of view, it is a polysaccharide with repeating units of
D-glucuronic acid and N-acetyl-D-glucosamine. The chemical structure was firstly

determined by Weissman and Myer in 1954.

The primary structure of the polysaccharide contains an unbranched linear chain with
monosaccharides linked together by alternating B-1.3 and B-1.4 glycosidic bonds
—see Figure. 1a. Within the secondary structure of HA hydrophobic faces exist, formed by
the axial hydrogen atoms of about eight CH groups on the alternating sides of the molecule.
Such hydrophobic patches energetically support the formation of meshwork-like B-sheet
tertiary structure as a result of molecular aggregation —see Figure 1b. The tertiary structure
is stabilized by the intermolecular hydrogen bonding. The hydrophobic interaction
and hydrogen bonding in combination with electrostatic repulsion allow large numbers
of molecules to aggregate to the formation of molecular networks (matrices)

of HA —see Figure 1c [5].



TBU in Zlin, Faculty of Technology 13

(8.) o /CHz

9.0

— 0.
] O"“»HO'F&H;&T—” /

0OH

H

O
CHOH
OH

CH2

\\\“\\‘ NN W\\\S‘ AN
S 'II-I"
\\&\\ \\\\1\‘\\\\\\“ NANNNNL

Figure 1 — The primary, secondary and tertiary structures of HA in solutions. (a) The
primary structure of HA consists of repeating disaccharide units of D-glucuronic acid
and N-acetyl-D-glucosamine with up to five hydrogen bonds existing between each two
neighbouring disaccharides, while the secondary structures are formed as tape-like twofold
helices by twisting each disaccharide unit through 180° compared with those ahead and
behind it in the chain. (b) The B-sheet tertiary structure tertiary structure is energetically
stabilized by interactions between hydrophobic patches (hatched) and intermolecular
hydrogen bonding between the acetamido (= and =) and carboxylate groups (e and o). (¢)

Schematic networks of HA molecules as a results of inter-molecular aggregation. [5]
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2 METHODS

2.1 Molecular dynamics

Individual particles of macromolecules and their environment are in molecular
dynamics (MD) modeled by solving the classical equations of motion (Newtonian equations

of motion)

0 1
2 > o - .
Mafo = = o Utotar (1, Ty ooy Ty), 6 =1,2 ... N,

X

where m, is the mass of atom a, 7 is its position and Uyl is the total potential energy that

depends on all atomic positions and, thereby, couples the motion of atoms.

The total potential energy, represented by the MD ,.force field”, the most necessary
part of the simulation, must represent the interaction between atoms in a simple

mathematical form that can be calculated quickly.

2.1.1 Force fields

MD is based on pair interactions between individual atoms. The potential energy

function has following contributions:

Utotal = Ubond + Uangle + Udihedral + UvdW + UCoulomb + Uimp 2.

The first three terms describe the stretching, bending, and torsional bonded interactions,

bond 3.
Upona = Z ko™ (1 = 101) %,
bonds i
l 4,
Uangie = Z kiang e(ei — 001)?,
anglesi
i 5.
Udinedrar = Z k™ [1 + cos(n;@; — ¥i)],
dihedral i

where bonds represent covalent bond in the system, angles are the angles between each pair

of covalent bonds sharing a single atom at the vertex, and dihedrals describe atom pairs
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separated by exactly three covalent bonds with the central bond subjected to the torsion angle

Q.
The final three terms in equation 2 describe interactions between non-bonded atom
pairs:
— . 2 6.
Uimp - Z sz (l/) - 1/)0) ’
angles

O‘.. 12 O‘.. 6 7.
ban = 33 ve(72) (32)
vdW ij T i)

i j>1

U — _%9; 8.
Coulomb — 47'[507'1'] ’

i j>1
vdWs correspond to the van der Waal’s forces (approximated by a Lennard-Jones 6—12

potential), Coulombs represent electrostatic interactions and "Impropers" monitor the

planarity of planar structures [6, 7].

The basic principle of calculations is shown in Figure 2 [8].

Set the initial conditions: r; (ty), v, (ty), ...

v

o Update neighbour list

v
Get forces Fi(t)

¥

-
|

|

|

|

|

I Solve equations of motion over &¢
| ¥
|

|

|

|

|

|

|

|

|

Perform p, T control (ensembles)
v

t—t+ot

v

Calculate the desired physical quantities

¥

et 9 = = =P End simulation

Figure 2 — Basic principle of calculation
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All MD simulations were performed in NAMD 2.10 program package [9] using the
CHARMM36 carbohydrate topology and force field parameters [10]. Long-range
interactions (especially coulombic) were counted only within a certain “cutoff” distance,

with the potential dropping linearly to zero from the distance "switchdist" - see Figure 3 [9].

Couples for which interactions were counted are within a distance marked "pairlistdist".
The ,,timestep* is limited by the vibration velocities of the lightest atoms and is usually 1 fs,
exceptionally 2 fs. The coulombic potential is counted in the "cutoff" limit for each nth
("nonbondedFreq") time step. Except for this distance, coulombic interactions are calculated
using the Particle Mesh Ewald method (PME), which, due to the reduction in computational
difficulty, calculates the coulombic interactions only in certain places and therefore
estimates the potential at other points. Every full step ("fullElectFrequency") the software
calculates full electrostatics. With the "excluded scaled 1-4" value, all 1-3 pairs are excluded
from the electrostatic calculation (i.e. if A is an atom bound to atom B and B is a carbon
atom bound and atom C, which is attached to atom D, then the pair AD is excluded because
the binding interactions between the atoms are much stronger than electrostatics).

This interaction is replaced by “1-4scaling” [6, 11].

switchdist cutoff

energy
o

distance

Figure 3 — Graph of VDW potential with and without cutoff function
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2.1.2 Radius of gyration

Radius of gyration (R) is a parameter that describes the equilibrium conformation
of a total system and is computed in two steps [12]. In the first step, the coordinates
of the center of mass Rc are determined, ignoring the hydrogen atoms, from the following

equation:
Xm(ri—Re) =0, 9.
where m; is the mass of the i-th atom and 1; is its position.

If atoms are taken as points in a 3D space, the square of the radius of gyration is

acquired as

RZ2=Y mi(rj‘;Rc)z' 10.

where M is the total mass of the atoms in a substance.

In the case of proteins, it is possible to assume equal masses for all non-hydrogen
atoms so that

ZN (TL Rc) 11.

where N is the number of atoms other than hydrogens in a substance.

The difference between the Ry values computed from Equations 10 and 11 is within
several hundredths of angstrom. It is more important in terms of accuracy to consider atoms
as coils with a radius R rather than as material points. Assuming that all atoms have the same

radius (1.5 A), we obtain a more exact equation:

ZN (rl Rc) +5R2. 12.

In Equation 12, %Rzis the square radius of gyration of a coil with the radius R

and a uniform density:

f:rzzmrzdr _ ERZ (12] 13.
f0R4n'r2dr I '
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Figure 4 — Radius of gyration (s) [13]

2.1.3 Previous radius of gyration studies

2.1.3.1 Experimental studies

Sorci and Reed [14] studied the effect of addition of a certain type of salt (for example
NaCl and CaCl,) for different ionic strengths on the resulting radius of gyration of HA.
(HA sodium salt (NaHy) was purchased from Sigma, separate gel permeation
chromatography determinations gave My = 1.8 MDa.) The result is a plot of the radius
of gyration dependence on the increasing ionic strength. Up to the value of I = 2 mM, the
HA is gradually formed to a final value of about 2000 A. Then, the HA structure is stabilized
with salt. Since the value of I = 5 mM, there is a gradual linear decline in the radius
of gyration. Monovalent salts exhibit compared to divalent higher value of the radius
of gyration. The size of NaHy was 1760 A and for HA calcium salt (CaHy) is 1550 A
(for I = 100 mM) —see Figure 5.
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Figure 5 — Dependence of radius of gyration on ionic strength [14]

In the paper from Fouisacc et al [15] called "Influence of the Ionic Strength on the
Dimensions of Sodium Hyaluronate" some of results are discussed about radius of gyration
and persistence length for different molecular weights (0.13 — 1.86 MDa) of HA samples
and three external salt contents with concentration (0.01; 0.06 and 0.3 M) using light scat-

tering. The results are shown in the Figure 6.
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M, L&) C,(N) (p?):"/%(expt)) (A)
1.86 x 108 46 500 0.3 156564
0.06 1907
0.01 2207
810 000 20 250 0.3 980
0.06 1039
0.01 1087
360 000 9 000 0.3 578
0.08 592
0.01 712
260 000 6 500 0.3 509
0.06
0.01 608

Figure 6 — Radius of gyration results for different molecular weight M,, and concentration ¢

[15]

In the article from Hayashi et al [16] ,,Chain-Stiffness and Excluded-Volume Effects
in Solutions of Sodium Hyaluronate at High lonic Strength®, twelve samples of NaHy were
studied ranging in weight-average molecular weight from 3.8 to 350 kDa

by static light scattering with 0.5 M aqueous NaCl at 25 °C —see Figure 7.

111'![

10%<8% 5, Innf

T T BT

Figure 7 — Radius of gyration of NaHy for different M,, [16]
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In the paper from Mendichi et al [17] ,,Evaluation of Radius of Gyration and Intrinsic
Viscosity Molar Mass Dependence and Stiffness of Hyaluronan®, the radius of gyration (Rg)
of nine HA samples with molecular mass ranging from 40 kDa to 5.5 MDa in 0.15 M NaCl

at 37 °C was measured by on-line multiangle light scattering —see Table 1.

Table 1 — Results of radius of gyration for different M,, [17]

Sample Mw (kDa) Re (A)
HA 1 236 550
HA 2 580 890
HA_3 665 980

In the study ,,Chain Persistence Length and Structure in Hyaluronan Solutions: Ionic
Strength Dependence for a Model Semirigid Polyelectrolyte”, Buhler and Boué [ 18] directly
determined for the first time the structure and the chain conformation of hyaluronan, a model
semirigid polyelectrolyte polysaccharide. In part of this study the radius of gyration
of the HA of two different molecular weights in 0.1 M sodium solution by static light

scattering was measured. The results of this measurement are shown in the Table 2.

Table 2 — Results of radius of gyration [18]

M. [kDa] Re [A]
85 270+ 20
160 350 + 40

2.1.3.2 MD studies

A study called “How Large is an a-Helix? Studies of the Radii of Gyration of Helical
Peptides by Small-angle X-ray Scattering (SAXS) and Molecular Dynamics“[19]
investigated the size of the radius of gyration of alanine-based helical peptides, measured
by two methods, using SAXS and MD. Based on these measurements, gyration radii were
compared with known sizes of ideal a-helixes. As a result, the radii of gyration

of the peptides studied in this work are significantly smaller than the radii of gyration
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of ideal a-helixes with the same sequence length. The gyration radius values measured

by the SAXS method were also less than with MD method.

In an article ,,Hyaluronan random coils in electrolyte solutions—a molecular
dynamics study”, Ingr, Kutdlkova and Hrncitik [20] have used the method of molecular
dynamics to model random coils of hyaluronan. An oligosaccharide of 48 monosaccharide
units was simulated until equilibrium (about 70 to 100 ns) and randomly selected pieces
of the molecule from different simulation frames were combined to form a long
polysaccharide chain of hyaluronan. The dihedral angles of the glycosidic connections
of the pieces completed with statistics deduced from the simulation. Selected molecules were
hyaluronan simulated in 1 M, 0.2 M and 0 M (polyelectrolyte only neutralized by
counterions) and its non-charged analogue in which the glucuronic acid unit was substituted

by glucose simulated in 1 M NaCl and MgCl; and in pure water.

Radius of gyration as a function of the number of monosaccharide units N for all the

simulated systems are presented in the Figure 8.
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Figure 8 — Radius of gyration as a function of the number of monosaccharide units N for

all the simulated systems [20]
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Ivanov and Nematu [21] focused on comparing HA simulations in aqueous media
and HA in aqueous media with different compounds. The main idea was to identify binding
sites, determine the frequency of their occupation, and compare the affinity of molecules

of various compounds and water.

Almond, DeAngelis, and Blundell [22] used MD simulations to study conformations
and detect the valence and dihedral angles of HA compared with experimental data.
The simulations were performed on tetrasaccharide and hexasaccharide of HA with an

explicit aqueous solvent and addition of sodium ions to achieve neutrality.

2.2 Dynamic light scattering

Dynamic light scattering (DLS) [23] is the most adaptable and useful set of techniques
for measuring in situ the sizes, and size distributions. There are many alternatives of DLS.
DLS methods are not able to identify the chemical nature of a nanoparticle. They measure
hydrodynamic quantities, usually the translational and/or rotational diffusion coefficients,
which are then related to sizes and shapes via theoretical relations. DLS is a technique often

referred to as photon correlation spectroscopy (PCS).

PCS is now the standard technique most commonly used in biophysical, colloidal
and polymeric laboratories. It serves to routinely characterize the particles as well as to study

the nature of the interactions of molecules and particles in liquid dispersions.

Figure 9 shows a diagram of a PCS device. Laser light is targeted at a sample
and a light scattered at a given angle of scattering is collected by a square law detector — a
photomultiplier, as it becomes more common, an avalanche photodiode. The output of the
photomultiplier is then processed by the photon counting system and the output is sent to the
autocorrelator. In modern PCS, fiber optic conductors are often applied to supply light to the
sample and collect scattered light, which then transports into the detector. In fact, optical

fibers are essential parts of this technique for heavily dispersed systems.
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Figure 9 — Schematic diagram of a PCS apparatus [23]

2.2.1 Hydrodynamic radius

Particles suspended in a liquid solvent are subjected to a random Brownian motion.
The light is scattered due to the particles in the suspension. Because the particles cause
localized changes in the refractive index, intensity variations are made by the particles

and evaluated using the second order normalized autocorrelation function [23, 24]

_ G 14.

where (I) is the average intensity, T is the correlation time, and G» (t) is the temporal

correlation function.

The second order normalized correlation function is then connected to the first order

correlation function gi(t), where gi(t) is expressed as
g:1(x) = 07, 15.

where q is the magnitude of the scattering vector and D is the translational diffusion

coefficient.
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The scattering vector ¢ is calculated as

_ A4mn . O 16.
= Sln(z),

where 7 is the refractive index of the solution, 4o is the wavelength of incident light in

vacuum and 6 is the scattering angle of light.
Using the Stokes-Einstein equation

D=L 17.
6mN Ry

sizes of particles in the solution are finally determined (D is the diffusion coefficient, & is
Boltzmann’s constant, 7" is the temperature, 7 is the solvent viscosity, and R; is the

hydrodynamic radius of the particles in solution).

Figure 10 — Hydrodynamic radius (the size of a hypothetical hard sphere that diffuses in

the same fashion as the particle being measured) [25]

2.2.2 Previous hydrodynamic radius studies

One study from Grundélova et al [26], which used DLS techniques to measure the
change in HA size after the addition of a certain amount of salt, was a study called “The
influence of quaternary salt on hyaluronan conformation and particle size in solution”.
Measurements performed HA samples with two molecular weights (My = 1.8 MDa

and My = 0.35 MDa). Benzalkonium chloride was used as the salt.

Another paper from Gribbon et al [27] “The analysis of intermolecular interactions in
concentrated hyaluronan solutions suggest no evidence for chain—chain association” used
DLS to study the influence of various salts (Ca2", Mn? ", Mg? ", Na" and K*) on the HA
hydrodynamic radius (Mw = 830 kDa) of the same concentration of salt (c = 10 mg/ml).



TBU in Zlin, Faculty of Technology 26

Analysis of DLS in the diluted solution showed a changes in the hydrodynamic radius HA,
for example with CaCl, (36 nm) and with NaCl (43 nm).

Next article from Viletti et al [28] “Static and Dynamic Light Scattering of
Polyelectrolyte/Surfactant Solutions: the Na-Hy / (C10TAB) System” discusses the
interactions between the anionic polyelectrolyte NaHy and the cationic surfactant
decyltrimethylammonium bromide (C10TAB). DLS experiments were carried out in the sin-
gle homogenous phases (region I: [C10TAB] < 0.040 M
and region III: [C10TAB] > 0.350 M) in ‘‘salt-free’” and at different added salt concentra-
tions (NaCl) — see Figure 11. The authors observed the decrease of the hydrodynamic radius
with salt up to 150 mmol/l, whereas the hydrodynamic radius remained constant after a fur-

ther increase in concentration.

- One phase>

7

/// Phapﬂraﬁn |

C,,TAB/mM

NaHy /g.L'T —»

.0

Figure 11 — Phase diagram of Na-Hy polyelectrolyte in C10TAB surfactant and NaCl salt.
(I) homogeneous phase; (II) phase separation and (III) homogeneous phase after addition

of salt or surfactant. [28]
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II. ANALYSIS
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3 PREPARATION AND MEASURING PROCESSING

The influence of ions and ionic strength on the size of HA was investigated through two
basic characteristics: the radius of gyration and the hydrodynamic radius, which were then

compared with each other.
3.1 Radius of gyration

3.1.1 System preparation

In the system under examination there were two antiparallel HA chains, each of
which contained 24 pairs of monosaccharide units - see Figure 12. This system was solvated
by a water box of (161.8 x 110.9 x 187.2) A with an explicit model of water molecules TIP3P
(in the systems with monovalent cations there were 310689 water molecules; with divalent
cations 304722). Subsequently, the system was neutralized and salted with 6 different
chlorides (NaCl, KCI, CsCl, MgCl,, CaClz, ZnCl) to a final ionic strength of (0.2; 0.6 and
1) mol 1! (in systems with monovalent salts there were 2061 cations and 2013 anions; for
divalent salts 2037 cations and 4026 anions). lonic strength 0.2 mol/l corresponds to 9.5
cations/dimer, 0.6 mol/l corresponds to 26 cations/dimer and 1 mol/l corresponds to 43

cations/dimer.

Figure 12 — Double-chain of HA
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Both HA chains in the water were completely free during simulations. In the case
where a part of the HA chain has got out of the water box, the water molecules positions

were recalculated through periodic boundary conditions.

All simulations were performed using the NAMD version 2.10 [9] software package
with CHARMM topologies and force field parameters. [10] Using the "automatic PSF
builder" in NAMD, a so-called PSF file was created using a topological file that determines
the pairing of individual atoms with other possible atoms. Timestep was set to 1 fs, cutoff
10 A and switching 8 A. The electrostatic effect was calculated using the PME, which is part
of the NAMD program package. Non-binding interactions were calculated in every second
step ("nonbondedFreq") and full electrostatics in every sixth step ("fullElectFrequency").
System energy was minimized for 180 fs, subsequent simulations were performed at
a constant temperature of 310 K and at atmospheric pressure with periodic boundary
conditions. The temperature was controlled by Langevin's dynamics. Coordinates of all
atoms for subsequent display and data processing in VMDs were stored every 1800 fs.
The simulation duration ranged from 75 to 85 ns. All parameters were set using the

configuration file - see Appendix P L.
Inter-atomic distances and other geometric properties were evaluated using VMD 1.9.3. [29]

MD calculations were very time consuming and hardware-intensive. There were therefore
used the services of the National Grid Infrastructure MetaCentrum owning several

supercomputers, which can be used for parallel computations on many processors. [11]

3.1.2 Measurement of the radius of gyration

To determine the radius of gyration of large HA random coils, a homemade program
was applied to molecular-dynamics simulations results for the oligosaccharides of 48
monosaccharide units. Randomly selected pieces of the chain from different frames of the
simulation were combined by a method of selection of the glycoside-bond dihedral angles
in accord with their distribution in the simulated molecules, which allowed to create all-atom

models of random coils of up to at least 5000 monosaccharide units.

Our method of construction of large macromolecular coils was similar to the method
used by Furlan et al. [30] or Ivanov & Neamtu [21], but it was applied to much larger
molecules and a specific statistical procedure to determine the dihedral angles of glycosidic

connections of the pieces was used. Due to the purpose of monitoring the system in
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equilibrium, the pieces for building of the random coils were taken from the interval of
approximately 5 ns. For each such interval 5000 coils of a reference length of 2000
monosaccharides (My = 379 kDa) were generated and the mean square value of the radius
of gyration and standard deviation of the mean value were calculated. The chosen length is
adequate for the composition of a realistic random coil. This method was previously used by

Ingr, Kutalkova & Hrncitik. [24]

3.1.3 MD simulations equilibrium

MD simulation were calculated for individual systems with a duration of around 80 ns.
The equilibrium for ion interaction with HA occurred as early as about 30 ns, when the
dependence of the number of ions near the macromolecule on time fluctuated around the
steady average - see Figure 13. For more relevant coil size results, only simulation sections
with no interaction between the two chains (or the interaction as small as possible) were

used. These sections were found after much longer simulation time.

60

40

35

48,6 49,14 49,68 50,22 50,76 51,3 51,84 52,38 52,92
t (ns)

Figure 13 — Dependence of the mean number of Ca** ions N in the vicinity of HA on time
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3.2 Hydrodynamic radius

3.2.1 Sample preparation

Three different molecular weights of HA (243, 370 and 600 kDa) were tested.
For every molecular weight three different solutions of HA with three different salts (sodium
chloride, calcium chloride and zinc chloride) at different concentrations (200, 600 and 1000

mmol/l) were prepared.

Firstly, a 100 ml salt solution was prepared with certain ionic strengths. For example,
for NaCl with the ionic strength of 0.6 mol/l the relationship between the ionic strength

and concentration is:

1 1
Inact = ;Z?=1 CiZi2 = ;(ZC) , 18.

cyact = Inact = 0.6 mol/l, 19.
where c is concentration, z is charge and / is ionic strength.

Consequently, the NaCl weight is

mol

Myact = Cnact* Myact * Viact = 0.6 7 - 58.44% +0.11=3.5064 g, 20.

where m is weight, M is molecular weight and 7 is volume.

Similarly, for CaClz with 0.6 mol/l ionic strength.

1 1
leact, = 52’:1 cizt = 5(56) , 21.
2
CCaClz = EICG.CZZ = 0.24 mOl/l ) 22.
l
Mcact, = Ccact, * Mcact, " Veact, = 024% ' 110-99% 011= 23.
2.6638 g,

Subsequently, a 1% solution of HA was produced in a 25 ml flask by mixing 0.25 g of
solid HA with 24.75 ml of salt solution prepared in the previous step. The flask with the 1%
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HA solution was mixed in a mixer machine with water heated to the temperature of 50 °C

for 24 hours (until complete HA dissolution).

3.2.2 Measurement on Zetasizer Nano ZS

The prepared solutions of HA were further diluted to the resulting 0.1% solution by
adding of salt solution to be compatible with the measuring range of the Zetasizer Nano ZS
[31]. The 1% solution of the lowest molecular weight HA (243 kDa) had to be finally diluted

with an additional amount of salt solution to a final 0.05% solution.

The prepared HA solutions were then placed in special measurement cuvettes using a
syringe with a sterile filter having a pore size of 0.2 um. The cuvettes were then inserted into

the measuring device.

The Zetasizer software requires certain information about the physical properties of the
material and of the dispersant of the sample. It is therefore necessary to enter all these data
into the measuring program, including the molecular weight of HA and concentration of the
dispersant and the temperature at which the sample will be measured. Based on these data,
the viscosity and refractive index of the measured sample are calculated, which is important
for the final calculation of particle sizes. Longer measurement durations will increase the
quality of data obtained and will generally give better results, as those runs that contain the
poorest data, which have been rejected. Remaining good runs were used in the final
measurement calculation. Because of the polydispersity, the number of measurements was
15 and the measurement duration was 60 seconds. Five measuring cycles were performed

on each sample and the average particle distribution was then calculated.
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4 RESULTS AND DISCUSSIONS

4.1 Radius of gyration

4.1.1 Influence of interaction between two HA chains

The simulated system consists of two antiparallel chains because we originally wanted
to study hyaluronan-hyaluronan interactions and subsequently the influence of these
interactions to their shape. Because the influence of salts on the HA radius of gyration is far
more prominent, it was important to find the simulations sections without these interactions.
The coil was then composed of only one chain. Table 3 shows electrostatic, vdW, and total
nonbond values for individual systems. Maximum electrostatic interaction was at the system
with calcium and zinc ions. These systems do not exactly match the model we need, there is
no zero interference. On the contrary, the system with potassium and cesium ions show
almost zero interaction between the two chains — see Figure 14. For systems that exhibit zero
or smallest interaction, the influence of ions and their concentration on the final size of coil

was studied.

Table 3 — Minimal HA-HA interaction energy values (kcal/mol) for individual systems

from all simulation runs

lon Elec vdw Nonbond
1M Na* 0,91 +0,09 -0,13 £ 0,02 0,78 £ 0,08
K* -0,0077 + 0,0006 | -0,00040 + 0,00008 | -0,0080 *+ 0,0006
Cs* 4,05 +0,15 -1,17 £ 0,08 2,9+0,1
Ca* 56,1+0,9 -21,1+0,6 34,9+0,8
Zn? 89,9+1,2 -45,8 +0,9 44,1 +0,9
Mg 7,5+0,5 -1,27 +0,08 6,2+0,4
600 mM Na* 24,1 +£0,7 -12,6 £0,6 11,6 £ 0,6
K* -0,72 £ 0,06 -2,6+0,2 -3,3+0,2
Cs* 1,76 £0,19 -0,46 £ 0,07 1,30+ 0,09
Ca* 9,8+0,5 -10,7 £ 0,6 -0,93 £ 0,08
Zn? 21,9+0,6 -6,9+0,4 15,0 +0,5
Mg?* 11,1+0,4 -0,87 £ 0,07 10,2+0,4
200 mM Na* 1,21 +0,09 -1,17 £ 0,13 0,036 + 0,002
K* 0,078 + 0,005 -0,026 + 0,005 0,051 + 0,005
Cs* 0,058 + 0,004 -0,008 + 0,002 0,049 + 0,004
Ca* 58,3+0,8 -3,3+0,1 55,0+0,7
Zn? 18,6 £ 0,6 -3,5+0,2 15,1+0,5
Mg?* 0,50 + 0,06 -0,085 + 0,008 0,42 + 0,06
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Figure 14 — Dependence of HA-HA electrostatic interactions on the ionic strength for in-
dividual systems (The error lines are hidden within individual points — small measurement

errors)

4.1.2 Results

Figure 15 shows a trend where the radius of gyration of the coil is the largest for system
with ionic strength of 600 mmol/l. At an ionic strength of 200 mmol/l, few ions are present
in the vicinity of HA. It has caused a good dispersion of the ions in the small space of the
coil and has not changed its size, so the radius of gyration is small. With the increase of ionic
strength, the number of ions near the HA also increase —see Figure 16. After that, there was
no good dispersion in the space of the coil and its expansion occurred, i.e. the increase in the
radius of gyration was observed. The huge number of ions near the HA at the greatest ionic
strength caused the overall stabilization of the coil. The resultant radius of gyration has

returned to lower values.

The opposite trend only showed a system with calcium ions, which could be due to the
high interaction between the two chains in this system and the large number of ions in the

vicinity of HA at the lowest ionic strength.

The radius of gyration ranged from 300 A to 865 A for individual systems. Calculated
for 2000 monosaccharide units (corresponds to a molecular weight of 370 kDa). The smallest
size of the coil had a system with sodium ions (from 300 A to 465 A). In previous studies,
the size of a coil in similar systems at 0.3 mol/l concentration was around 570 A [15].

On the other hand, the system with zinc ions had a value of about 525 A to 865 A.
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Stabilization of the coil occurred at the highest ionic strength. Higher size could also be

caused by great interactions between chains in this system.
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Figure 15 — Dependence of the radius of gyration on ionic strength for
individual systems (The error lines are hidden within individual points —

small measurement errors.)
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Figure 16 — Dependence of the number of ions in the vicinity of HA on ionic strength for
individual systems (The error lines are hidden within individual points — small

measurement errors.)

In the following three figures (Figure 17-19), dependence of the radius of gyration
on the number of monosaccharide units for three different ionic strengths is shown, where
the number of 3250 monosaccharide units corresponds to a molecular weight of
approximately 600 kDa. Dependence showed a similar growing trend for all salts, with the
exception of the system with zinc ions (I = 200 mmol/l), where the last two values deviated
from the linear character. It could be caused by big interaction between two chains in this
system. The radius of gyration was higher than 1000 A for the system with zinc ions with
3250 monosaccharide units. At the highest ionic strength, the gyration radius was reduced

to about 670 A because of greater stabilization of the coil.
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Figure 17 — Dependence of radius of gyration on the number of monosaccharide units
(I=200 mmol/l) (K* values are covered by Cs" values. The error lines are hidden within
individual points — small measurement errors.)
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Figure 18 — Dependence of radius of gyration on the number of monosaccharide units

(I=600 mmol/l) (The error lines are hidden within individual points — small measurement

errors.)
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Figure 19 — Dependence of radius of gyration on the number of monosaccharide units
(I=1000 mmol/l) (The error lines are hidden within individual points — small measurement

errors.)

Hydrodynamic radius

Influence of distributions

The particle size distribution of HA with different molecular mass and various ionic

strength is shown on the following figures. On the first three images (Figures 20-22), it can

be observed that with increasing molecular weight in the system with sodium ions the

particle distribution shows greater symmetry. The higher molecular weight provided us

better and more relevant results. The smaller molecular weight increased a measurement

error of the particle size. The system with calcium ions evinced a good distribution even for

the lowest molecular weight. It could have been caused by faster system stabilization.

Systems with divalent ions generally had better particle size distribution —see Figures 23-25.
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Size Distribution by Intensity
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Figure 20 — Particle size distribution for HA (M, = 243 kDa) with sodium ions
(I'=200 mmol/I)
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Figure 21 — Particle size distribution for HA (M, = 370 kDa) with sodium ions
(I'=200 mmol/I)
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Size Distribution by Intensity
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Figure 22 — Particle size distribution for HA (M, = 600 kDa) with sodium ions
(I'=200 mmol/I)
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Figure 23 — Particle size distribution for HA (My = 243 kDa) with calcium ions
(I'=200 mmol/I)
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Size Distribution by Intensity
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Figure 24 — Particle size distribution for HA (My = 370 kDa) with calcium ions
(I=200 mmol/I)
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Figure 25 — Particle size distribution for HA (My = 600 kDa) with calcium ions
(I=200 mmol/I)

Particle distribution has also been improved with the ionic strength increase, which
could be due to the fact that more ions could cause better stabilization. This fact can be seen

on the next two figures (Figure 26 and 27).
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Figure 26 — Particle size distribution for HA (M, = 370 kDa) with sodium ions
(I'=200 mmol/I)
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Figure 27 — Particle size distribution for HA (M, = 370 kDa) with sodium ions
(I=1000 mmol/l)

4.2.2 Results

HA with the lowest molecular weight (243 kDa) was not evaluated because of high
measurement error and different dilution of solutions —see Figure 28. For HA with a medium
and larger molecular weight (My = 370 and 600 kDa), a trend emerged where the greatest
hydrodynamic radius was measured at an ionic strength of 600 mmol/l —see Figure 29
and 30. For HA with a molecular weight of 370 kDa (or 600 kDa), the hydrodynamic radius
ranged from 390 A to 530 A (or from 470 A to 660 A). For the medium molecular weight

(370 kDa), the hydrodynamic radius for individual measurements did not differ significantly.
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Conversely, at the largest molecular weight (600 kDa) there was a meaningful increase in

hydrodynamic radius for HA with zinc ions whose value ranged from 580 A to 660 A.
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Figure 28 — Dependence of the hydrodynamic radius on ionic strength for individual

systems (My, = 243 kDa)
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Figure 29 — Dependence of the hydrodynamic radius on ionic strength for individual

systems (My, = 370 kDa)
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Figure 30 — Dependence of the hydrodynamic radius on ionic strength for individual

systems (My, = 600 kDa)
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CONCLUSION

The goal of this work was to describe the influence of different ions on the resulting
structure of the HA macromolecule, based on molecular dynamics simulations in NAMD
software and an experiment using the method of dynamic light scattering. The main intention
of this work was to find and provide a possible comparison of these two methods. Two
antiparallel chains in water (completely free) with different types of salts (NaCl, KCI, CsCl,
CaCly, ZnCl; and MgCl,) with various ionic strength (0.2 mol/, 0.6 mol/l and 1 mol/l) in the
vicinity of HA were investigated. Each chain of the system contained 24 pairs of
monosaccharide units. The system studied after being surrounded by water was so large that
it was for MD at the edge of the tolerability, so that much longer chains can’t be explored
by molecular dynamics. Subsequently random coils of HA were constructed by application
of specific statistical procedure to determine the dihedral angles of glycosidic connections
of the pieces. For the experimental part, certain solutions of HA (243 kDa, 370 kDa
and 600 kDa) dissolved in saline solution (NaCl, CaCl, and ZnCly) with different ionic
strength (0.2 mol/, 0.6 mol/l and 1 mol/l) were prepared.

The most interesting discovery was a trend, when both the radius of gyration
and the hydrodynamic radius of the coil are the largest for systems with ionic strength of 600
mmol/l. The overall stabilization of the coils and thus the reduction of the radius of gyration
and the hydrodynamic radius occurred at the greatest ionic strength (1000 mmol/l). It can be
seen in the MD simulations with all salts except calcium. In experiments these trends were
observed especially on the systems with zinc ions (My = 370 kDa) and calcium ions
(Mw = 600 kDa). The radius of gyration ranged from 300 A to 865 A for individual systems
and the hydrodynamic radius from 390 A to 530 A for the mean molecular weight which
corresponds to simulated systems. The different range of these two variables is due to their

different nature.

Small disappointment were experimental results for the smallest molecular weight
(240 kDa), which showed a big measurement error in hydrodynamic radius and low
symmetry of distributions. On the contrary, the system with calcium ions had the smallest
measurement error and symmetry distributions for all molecular weights at all ionic
strengths. The calcium salt showed excellent and rapid stabilization capabilities.

A statistically evident trend in the hydrodynamic radius was mainly observed in the
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measurement of HA with the largest molecular weight (600 kDa). It can be clearly stated

that at the mean ionic strength (600 mmol/l) the hydrodynamic radius was the largest.

The submitted master’s thesis pursued comparison between the radius of gyration from
MD simulations and the hydrodynamic radius from experiments (dynamic method). In the
future it could be interesting to compare the radius of gyration from MD simulations with

the radius of gyration measured by the static light scattering as well.
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LIST OF ABBREVIATIONS

HA Hyaluronan

MD Molecular dynamics

c Concentration

My Molecular weight

CH Carbohydrates

NAMD Nanoscale Molecular Dynamics
CHARMM  Chemistry at Harvard Macromolecular Mechanics
R, Radius of gyration

NaHy Sodium Hyaluronate

CaHy Calcium Hyaluronate

SAXS Small-angle X-ray scattering
DLS Dynamic light scattering

PCS Photon Correlation Spectroscopy
PSF Protein Structure File

VMD Virtual Molecular Dynamics

vdW

van der Waals
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APPENDIX P I: CONFIGURATION FILE .NAMD

structure /storage/brno6/home/v_bus/K/2wild K 1M.psf
coordinates /storage/brno6/home/v _bus/K/2wild K 1M.pdb
set temperature 310

set outputname /storage/brno6/home/v_bus/K/2wild K 1M
firsttimestep 0

# Input

paraTypeCharmm on

parameters /storage/brno6/home/v _bus/par top.inp
temperature S$temperature

# Force-Field Parameters

exclude scaledl-4

l-4scaling 1.0

cutoff 10.0

switching on

switchdist 8.0

pairlistdist 12.0

# Integrator Parameters

timestep 1.0 ;# 1lfs/step

rigidBonds water

molly on

nonbondedFreq 2

fullElectFrequency 6

stepspercycle 30

# Constant Temperature Control

langevin on ;# do langevin dynamics

langevinDamping 1 ;# damping coefficient (gamma) of 1/ps
langevinTemp S$temperature

langevinHydrogen off ;# don't couple langevin bath to hydro-gens
# Periodic Boundary Conditions

cellBasisVectorl 161.8 0.0 0.0

cellBasisVector2 0.0 110.9 0.0

cellBasisVector3 0.0 0.0 187.2

cellOrigin 75.4 39.7 -50.5

wrapWater on

wrapAll on

# PME (for full-system periodic electrostatics)

PME vyes

PMEGridSpacing 1.0

# Constant Pressure Control (variable volume)
useGroupPressure yes ;# needed for rigidBonds
useFlexibleCell no

useConstantArea no



APPENDIX P II: FIGURES OF INDIVIDUAL COILS
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