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ABSTRACT 

In the first part of this Ph.D. Thesis, the extrusion film casting process has been 

presented and negative phenomena that represent serious process limitation have 

been discussed. Following section is dedicated to the listing of both experimental 

and theoretical works and different mathematical models describing the 

extensional kinematic in film casting that have been published since 1970s. In the 

next section, novel viscoelastic extrusion film casting model utilizing 1.5D 

membrane approximation was derived considering single-mode modified Leonov 

model as the viscoelastic constitutive equation, energy equation, constant heat 

transfer coefficient, advanced crystallization kinetics taking into account the role 

of temperature, cooling rate and molecular stretch, crystalline phase dependent 

modulus and temperature dependent relaxation time. The model has been 

successfully validated for branched low-density polyethylenes and linear isotactic 

polypropylenes by using suitable experimental data taken from the open literature. 

The model has consequently been used for systematic parametric study in order 

to reveal the role of variety dimensionless variables (such as planar to uniaxial 

extensional viscosity ratio, extensional strain hardening, Deborah number, second 

to first normal stress difference ratio at the die exit, draw ratio, heat transfer 

coefficient and flow induced crystallization) on polymer melt/solid behavior 

during the extrusion film casting process with specific attention to unwanted 

neck-in phenomenon. Obtained knowledge together with the suggested model can 

be used for optimization of the extrusion die design (influencing flow history and 

thus die exit stress state), molecular architecture of polymer melts, processing 

conditions in order to minimize neck-in phenomenon as well as to optimize the 

production of flat polymeric films and porous membranes via extrusion film 

casting technology. 



 

 

ABSTRAKT 

Úvodní část této disertační práce je věnována popisu výroby tenkých 

polymerních filmů pomocí technologie lití na válec a souvisejících nestabilit toku, 

které mohou, pokud nastanou, redukovat procesní okno, a tak významným 

způsobem přispět k omezení produktivity a efektivity této technologie. 

V navazující části je podán přehled prací věnovaných této problematice jak 

z hlediska experimentálního, tak teoretického se zvláštním zřetelem na 

matematické modely popisující kinematiku daného procesu, které svým vznikem 

sahají až do 70. let minulého století. V další části práce je odvozen nový 

viskoelastický model pro technologii extruzního lití na válec, který je založen na 

1.5D membránové aproximaci, konstituční rovnici modifikovaného Leonovova 

modelu, rovnici energie uvažující konstantní součinitel přestupu tepla, pokročilé 

kinetice krystalizace zohledňující vliv teploty, rychlosti chlazení a intenzity 

protažení makromolekulárních řetězců, dále na krystalinitě závislém modulu a 

teplotně závislém relaxačním čase. Model byl úspěšně validován pro rozvětvené 

nízkohustotní polyethyleny a lineární izotaktické polypropyleny za použití 

vhodných experimentálních dat převzatých z dostupné literatury. Následně byla 

provedena systematická parametrická analýza s cílem odhalit vliv materiálových 

a procesních parametrů vyjádřených pomocí řady, převážně bezrozměrných 

proměnných (jako např. poměru planární a jednoosé tahové viskozity, stupně 

zatvrzení při jednoosém protahování, Debořina čísla, poměru druhého a prvního 

rozdílu normálových napětí na konci vytlačovací hlavy, dloužícího poměru, 

koeficientu přestupu tepla nebo molekulárního protažení vedoucího k tokem 

indukované krystalizaci) na chování polymerní taveniny při procesu odlévání 

vytlačovaného filmu na válec se zvláštní pozorností k nežádoucímu jevu neck-in. 

Získané poznatky společně s nově navrženým modelem je možné využít k 

optimalizaci designu vytlačovacích hlav (ovlivňující tokovou historii a napětí na 

konci výstupní štěrbiny), molekulární architektury polymerních řetězců a 

zpracovatelských podmínek, a to jak za účelem minimalizace nestabilit typu 

neck-in, tak k optimalizaci výroby plochých polymerních fólií a polopropustných 

membrán pomocí technologie extruzního lití na válec. 
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STATE OF THE EXTRUSION FILM CASTING 

PROCESS 

Extrusion film casting is an industrially significant process that has firm place 

among polymer processing technologies in practice. It can be categorized as 

a continuous, high-speed manufacturing process during that a thin, highly 

oriented films are produced. A great range of the plastic films and sheets produced 

by this technology can found their use in many different applications of daily and 

technical use: plastic bags, packing for consumer products, magnetic tapes for 

storage of audio video content, optical membranes for liquid crystal displays, air 

and vapor barriers, foils for capacitors, separator films for batteries in mobile 

devices and electric vehicles or as product for further processing by other 

technologies, such as thermoforming and biaxial orientation [1, 2]. 

Growing demands in an amount of production and quality of fabricated films 

together with introduction of new materials ask for new approaches in production 

line. Of particular interest and along the mechanical properties of the produced 

films is to keep film thickness uniform and width as close as possible to the 

designed extrusion die width. Besides, course of action based on a trial-and-error 

approach involved in design of film casting lines, the computer modeling can be 

utilized bringing the advantages of a reduced consumption of material during 

testing stage in commissioning of new casting line, a reduced time required for 

design and finally more efficient design. Thus, this strategy can provide better 

insight into the problem, extend the knowledge on relationships between process 

rheological quantities and suggest the possible approaches how to deal with them 

to optimize the process or give better understanding of underlying mechanics [2]. 

 

1. The Film Casting Process 

 

1.1 Process Description 

The production of film by the technology of extrusion film casting involves the 

several devices that take essential part in the entire process. The upstream part of 

the operation is processed by the extrusion machine where the polymer pellets are 

conveyed, homogenized and compressed by a screw, melted by means of 

dissipation and external heat sources, and thus the pressure require to push the 

polymer melt through the uniform slit die (center-fed T die or coat-hanger die) is 

generated. Once the polymer is emerged from the die that has typically small 

opening of about 1–2 mm, the second, downstream, stretching stage takes place 

where this thick sheet is intensively stretched in the machine direction by 

a constant rotating take-up drum, whose linear velocity is higher than the exit 

polymer velocity at the die, and simultaneously providing the sufficient cooling 
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rate to fix the final dimensions of so-called primary film, see Fig. 1. Moreover, by 

pulling the polymer melt at these conditions across the take-up length, 

the macromolecular orientation and thickness reduction to film is imposed. This 

solidified secondary film is subsequently handled by system of drums for 

winding-up by a winder to the rolls. 

 

 

 

Fig. 1: Schematics of the extrusion film casting kinematics. 

At the chill roll, several additional technological devices can be used to ensure 

a better contact line between film and a chill roll and to increase the rate of thermal 

transfer, such as air knife (a slit nozzle blows a jet of cooled air onto the film) or 

electrostatic pinning. In this composition, a high voltage wire is placed parallel to 

the grounded chill roll that creates an electrostatic discharged exerting the 

electrostatic force onto film to tight the contact film-chill roll. Another option with 

the similar result that can be used is vacuum box which function is based on 

suction of the air between the film and the chill roll and thus provide the negative 

pressure in this section for a better contact. Aside from cooling down on the chill 

roll, polymer film is naturally quenched, to a certain level depending also on the 

length of the drawing zone, by its travelling through the surrounding environment. 

This can be enhanced by introduction of convected air or an inert gas source to 

this section or by a film passage through a fluid bath [3]. Additionally, secondary 

film is about to undergo a treatment (plasma treating, heating and biaxial 

orientation) depending on the desired properties and purpose of the final product. 
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Specific attention should be paid to the polymer behavior in the drawing zone 

and to extensional conditions since this stage mainly determines the mechanical 

and optical properties that are accommodated by end-product [2, 4].  

To produce highly functional films with tailored properties, multiple layers of 

different polymer melts can be coextruded and stretched, i.e. final properties of 

such film are constituted by traits of each layer. In this way, multilayer films with 

enhanced properties, such as impermeability to oxygen and moisture, strength, 

chemical resistance or color can be produced [5]. 

An alternative continuous manufacturing technology for the film production is 

called extrusion film blowing process. In this process, the extruded tube is inflated 

by an internal pressure into the shape of bubble having a thin wall thickness, 

quenched and hauled off. On par to this competing film production technology, 

films that are fabricated by extrusion film casting have a good transparency, 

thickness uniformity, smoother surface and are produced at higher production 

rate [2]. 

According to the current industrial practice where the wide variety of films is 

manufactured with requirement on its use in heterogeneous application, a broad 

range of materials is processed by producers for film casting technology. 

Frequently used polymeric materials include low density polyethylene, LDPE; 

high density polyethylene, HDPE; linear low density polyethylene, LLDPE; 

polypropylene, PP; polyethylene terephthalate, PET; and polystyrene, PS. 

Extrusion film casting is suitable for low viscosity polymers as well [6]. 

Owning to vast application variety of these films, there is request for production 

of wide range of sizes. Film width can range from 0.1 m to 10 m, thickness from 

20 μm to 2000 μm [4] at production rate that varies from 70 to 200 m/min. 

The variation in thickness is reported ranging from 3 to 5 % [1]. 

 

1.2 Flow Instabilities 

Several polymer processes involve the situation in which the polymer is 

stretched after initial extrusion. The presence of an air-polymer interface in the 

drawing zone allows to develop different kinds flow instabilities that place 

a serious limitation on required film quality and quantity. Their formation is 

influenced by the processing conditions, heat transfer and rheology of processed 

polymer. Some of them are observed in most cases, such as neck-in and 

edge-beading and others only under certain conditions that make the process 

unstable, such as draw resonance and film rupture. In the following subsections, 

their description is provided. 

  



 

13 

1.2.1 Neck-in 

Upon exiting the die, the extruded polymer in form of thick sheet exhibits 

swelling due to viscoelastic nature of the most of the polymers. This molecular 

stress relaxation is consequently influenced by velocity field rearrangement that 

takes place during a transition from a confined shear flow in slit die to the 

extensional one in downstream. As a polymer sheet is hauled off further 

downstream and stable processing conditions are satisfied, its cross-sectional 

dimensions are monotonically reduced due to external drawing force exerted on 

sheet by a rotating take-up drum. Aside from desirable reduction in the film 

thickness, the reduction in film width is experienced. This defect is called neck-in 

and can be defined as the difference between film half-width at the die exit and 

final half-width of solidified film (Fig. 2). 

 

 

 

Fig. 2: Visualization of neck-in phenomenon during extrusion film casting. 

To minimize the extent of neck-in phenomenon, a drawing length should be 

kept as short as possible (few centimeters in length) and wide flat die should be 

used. Neck-in magnitude is also severely impacted by viscoelastic properties of 

processed polymer melt. Theoretical predictions and numerical simulations 
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showed that the neck-in extent can be correlated with extensional viscosity 

hardening of the polymer melt [7–9].  

 

1.2.2 Edge-beading 

Beside the neck-in phenomenon, the interrelated defect termed as edge-beading 

or dog-bone defect is formed making the edge portions of the film substantially 

thicker than its central part (Fig. 3). The gauge of these elevated parts can be five 

times higher compared to the center and several centimeters wide. Predominant 

cause of edge-beads formation is edge-stress effect [10].  

 

 

 

Fig. 3: Visualization of edge-beading phenomenon during extrusion film casting. 

Consequently, those elevated edges are often trimmed by a slit razer, scrapped 

and potentially reprocessed in order to get even film surface. Disregard a large 

amount of waste material, there are another issue connected with edge-beads 

causing the air to be trapped between the film and chill roll resulting in turn to 

worse film quality. Even though formation of edge-beads represents a problem 

for reasons stated above and manufacturers make an effort to reduce them, their 

complete elimination might have a consequence in increased extent of neck-in 

phenomenon. Therefore, in the practice, the technological procedure can be found 
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when the formation of edge-beads is deliberately supported immediately after the 

polymer exits the die by the increased die lip opening at the ends of the slit die [4].  

 

1.2.3 Draw Resonance 

The stability of the process is considerable influenced by amount of stretching 

that is experienced by the film in the drawing zone. Thus, to evaluate the intensity 

of drawing in the take-up length, the draw ratio is introduced and since the take-up 

velocity is much greater than die exit velocity, its value is imposed higher than 

unity. The typical value of the draw ratio for the film casting operation is in range 

of 2 to 20 [4], albeit modern casting lines can operate in the much higher 

production rates. If the draw ratio achieves (for the given process conditions, die 

design and polymer used) some critical value, the transient hydrodynamic 

instability called draw resonance starts to occur, which may limit the processing 

window considerably. 

 

 

 

Fig. 4: Visualization of draw resonance experienced during extrusion film casting. 

Among the signs of how this flow instability can be manifested belongs 

sustained oscillation in the film dimensions even though the volumetric flow 

supplied from the slit die and take-up speed is kept constant (Fig. 4). These 

sinusoidal oscillations of the same frequency in the film width and thickness 

(measured in the center of the film) are shifted to each other by the half-wave 

length (which is the maxima in width and corresponds to minima in thickness) and 
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vice versa [11]. However, it is worth to note that the results of numerical 

simulations suggests that the thickness disturbances in the central portion of the 

film are out-of-phase on par to those at edge part of the film and moreover, the 

oscillation amplitude is of higher value than that observed in thickness oscillation 

[12]. Lengthen drawing distance, increased cooling effects and utilization of 

polymers with strong extensional strain hardening behavior can stabilize process 

and shift the onset of draw resonance toward higher draw ratios. 

Film breakage is another state that can be observed during the process of 

elevating draw ratio. In this case, the cohesive failure among the polymer chains 

causes the disintegration of the film if the critical in-film stress is exceeded due 

to the fact that chains cannot be longer reorganized in way to relieve local stresses 

in time frame imposed by the deformation. This can be seen in the polymers 

containing long chain branches or a high molecular weight portion that are 

processed in combination with high cooling rates in drawing zone, which results 

to good stability of the process but also in development of the high stretching 

stress [2]. 
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2. Mathematical Modeling of the Extrusion Film 

Casting Process 

 

2.1 Literature Review 

Polymer sheet or filament drawing has received enormous amount of attention 

and been studied extensively over the past four decades both experimentally and 

theoretically (Tab. 1) due to its great importance in the polymer processing 

industry. 

Table 1: Overview of steady-state analyses of film casting process (table adapted 

from [13–15] and updated for new studies). 

Model 

Dimensionality 

Viscous Fluids Viscoelastic Fluids 

Isothermal 
Non-

isothermal 
Isothermal 

Non-

isothermal 

1D [16],[4],[17] 
[6],[18],[19], 

[20],[21] 

[22],[23], 

[24],[25], 

[26],[27] 

[28],[29], 

[30],[31], 

[32], 

[33],[7],[8]  

2D [34] [15],[35],[36] 

[12],[37], 

[38],[39], 

[40],[30] 

[41],[42],[43] 

3D [44] [13] [14]  

 

 Initial efforts were made on a fiber spinning process for which the flow 

kinematics are similar from a mathematical point of view if considered as the 

one-dimensional flow case, for Newtonian and Maxwell fluids by Gelder [45] and 

Fisher [46, 47], respectively. Those studies were aimed on investigating the draw 

resonance phenomenon which was encountered for the first time by Christensen 

[48] and Miller [49], and who postulated that the nature of this phenomenon was 

not of viscoelastic nature because it could be observed in Newtonian fluids as 

well. Extending the process kinematics into two or three dimensions, the 

processes become different and one can observe phenomena in film casting that 

do not have a counterpart in fiber spinning, i.e. neck-in and edge-beading. The 

preliminary studies mentioned above provided the background for extended 

studies on EFC. Initial attempts to simulate EFC operations were dedicated to 

investigation of process stability and determination of draw resonance onset rather 

than to quantify the extent of neck-in phenomenon. The very first study on 

modeling of EFC process in this manner was carried out by Yeow [50] with 

utilization of numerical modeling. He used one-dimensional isothermal model for 
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Newtonian fluid (planar extensional free surface flow) for steady state solution 

and investigated the effect of introduced small two-dimensional perturbances on 

flow stability (namely transverse perturbations). The edge-effects, surface 

tension, aerodynamic drag and fluid inertia and gravity were neglected. A small 

curvature of the film together with uniform axial stress and axial velocity over 

film thickness were assumed. Due to the assumed kinematic in the free surface 

flow at the drawing section, the model could not capture an edge-bead defect and 

contraction in film width that was assumed to be infinitely wide. The Film 

thickness was allowed to vary in machine direction only. 

Aird and Yeow [51] continued on this mathematical background for 1D model 

and extended analysis for power-law fluids. Consequently, Anturkar and Co [52] 

and Iyengar and Co [22, 53] utilized isothermal modified convected-Maxwell 

fluid and Giesekus constitutive equations for linear and non-linear analysis in 

simulations of viscoelastic fluids. First isothermal trials towards necking 

phenomena modeling were carried out by Sergent [54] and then by Cotto, Duffo 

and Barq [6, 18, 20] for non-isothermal conditions. 

Another milestone work has been set by Dobroth and Erwin [10] who pointed 

out that the deformation flow in the drawing length comprises of two related 

regions and the extent of edge-beads and interrelated neck-in phenomenon is 

determined by the interplay between them through an edge stress effect. While 

the center of the film undergoes planar extensional deformation, the edge sections 

are subjected to uniaxial extensional one (see Fig. 5). 

 

 

 

Fig. 5: Visualization of planar and uniaxial extensional flows during extrusion film 

casting. 

In the case of fiber spinning, however, one can observe uniaxial extensional 

flow only. Some authors endeavored to relate and quantify the gauge of the 
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observed necking in terms of rheological parameters, such as shear, uniaxial and 

planar viscosity. Many authors reported that the strain hardening in 

uniaxial extensional viscosity may depress the extent of necking 

phenomena [37, 42, 55, 56]. This idea was continued by Ito [57], who related the 

neck-in extent to rheological parameters, such as the ratio of planar viscosities in 

axial and transverse directions, and derived an analytical equation for the edge 

line of a molten film of Newtonian and Maxwell fluid. Along the line of Dobroth 

and Erwin’s article [10], who as the first recognized deformation type in the 

drawing area, Shiromoto [7, 8, 33], recently, presented the idea that the extent of 

the necking should not have been described by uniaxial extensional viscosity only 

in addition to take-up length but as the ratio of planar and uniaxial extensional 

viscosities reflecting the deformation type in the central and edge portion of the 

film in the drawing section. Aside from performing non-isothermal viscoelastic 

simulations, they also proposed a theoretical model based on force balance and 

deformation type of a film in order to predict necking behavior. 

More recently, a 2D membrane model was presented by d’Halewyu [34] and 

Debbaut [37] for Newtonian and viscoelastic fluids, respectively. This frequently 

used model was capable of predicting the dog-bone defect, i.e. development of 

edge-beads, under the stationary conditions. Silagy et  al. [58] proceeded forward 

and enriched the membrane model by a supplementary kinematic hypothesis that 

was originally brought by Narayanaswamy [59] in his paper on float glass 

stretching, and carried out an extended isothermal study on the influence of 

processing conditions on film geometry, and stability analysis of EFC for 

Newtonian and Maxwell fluid using the UCM constitutive equation. Because of 

the assumptions used in flow kinematics, this model was able to cover film width 

reduction and thus predict the neck-in phenomenon but was still not able to predict 

edge-beading. This limitation was removed in their succeeding work [12] where 

the 2D isothermal membrane model combined with PTT constitutive equation 

was developed and obtained steady and transient stability results compared with 

its 1D predecessor. In the following years, the 1D version of Sylagy’s membrane 

model was used in many studies and considerable amount of work has been done 

on EFC under non-isothermal conditions including crystallization effects by 

Lamberti et al. [21, 60–62], Lamberti and Titomanlio [62–65], and Lamberti [66]. 

A three dimensional model for EFC simulation was further developed by 

Sakaki et al. [44]. The resolution of model equations required a utilization of 

finite element method. Problem was considered as an isothermal and steady state 

Newtonian flow. A process parameter space was chosen to reflect the industrial 

processing conditions. Model captured the development of both neck-in and edge 

beading and the effect of DR, TUL and die width were investigated. They found 

out that the gauge of neck-in and edge beading was affected by DR and TUL but 

not by the die width. The extent of neck-in increased with increasing DR and TUL. 

Lately, this approach was extended by Zheng et al. [13] for non-isothermal steady 

Newtonian fluid. Kometani et al. [9] conducted both an experimental and 
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theoretical investigation of effects of rheological properties on neck-in in film 

casting. For two tested materials PP and LDPE with no remarkable difference in 

the viscoelastic properties except the extensional ones (LDPE showed the 

remarkable increase in extensional viscosity at high strain rates), the neck-in 

extent for PP under the condition of higher draw ratio was increased over LDPE 

where neck-in was constant and independent of the draw ratio. Based on these 

experiments, the authors concluded that neck-in phenomenon in film casting 

depends on the extensional rheological properties. Furthermore, they utilized 

simulation based on three deferent rheological models (the Newtonian, 

Bird-Carreau and Giesekus model) with aim to evaluate its applicability to the 

film casting modeling. Results obtained from simulation based on Giesekus 

model were in quantitative agreement with experimental observation for both 

polymers, however, the other two utilized models did not provide a data good 

describing prediction due to their inaccurate expression in extensional viscosity. 

The influence of macromolecular architecture on the extent of necking 

phenomenon has been investigated by Ito et al. [57, 67] (effects of draw ratio and 

take-up length on necking for LDPE, HDPE and mLLDPE) and Baird et al. 

[68, 69] (effects of long chain branching and molecular weight distribution on 

necking for LDPE, mLLDPE and Ziegler-Natta catalyzed LLDPE). Research on 

multi-layer film casting considering Giesekus fluid has been performed in studies 

of Pis-Lopez and Co for steady state [70] and stability analysis [71]. 

Recently, Pol et al. [23, 28] and Chikhalikar et al. [29] have published a series 

of articles in which they have performed experimental and theoretical 

investigations of the effects of long chain branching and molecular weight 

distribution on the necking phenomenon extent. For this purpose, they have 

utilized the 1D membrane model, originally proposed by Silagy [58], the 

multi-mode eXtended Pom-Pom constitutive equation and the multi-mode 

Rolie-Poly stretch constitutive equation, respectively, for the long chain branched 

(LDPE, PP) and the linear (HDPE, PP) polymers. Fixing the DR and TUL, they 

found that the extent of necking is lesser for HDPE with a broader molecular 

weight distribution than that for LLDPE with a narrower molecular weight 

distribution and further that long chain branched LDPE necks-in to lower extent 

than linear HDPE or LLDPE. In the succeeding study, Pol and Thete [30] 

switched from the one-dimensional model that was used in their predecessor 

works on this theme to the two-dimensional model which was originally proposed 

by Ito et al. [57] incorporating UCM constitutive equations. Additionally, they 

derived analytical solution for low and high Deborah numbers. They found that 

while the film width of modelled LLDPE continuously decreased with increased 

draw ratio, the film width for LDPE decreased with increased draw ratio in case 

of long take-up lengths and remained constant for shorter ones. That is, there is 

existence of a locus of points in the attainable region that divides DR–De plane 

into sections where the dependence of neck-in on draw ratio has opposite trends. 
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In their latest work [25], they addressed the effects of the individual 

viscoelastic relaxation modes of a polymer melt on its behavior in polymer melt 

extrusion film casting process using UCM and PTT constitutive equations and 1D 

isothermal membrane model. They found that experimental data for long-chain 

branched LDPE was described better by UCM model, whereas PTT model 

provided better simulation results for the linear LLDPE experimental data. 

Even though, the real EFC manufacturing process involves complex kinematics 

and is considered as a 3D problem, whose numerical simulation can be very 

demanding, it has been proven by many authors that the EFC 1D membrane model 

(originally proposed by Silagy [58] and if used in combination with appropriate 

constitutive equations) is capable of  providing results that are in good agreement 

with experiment data. 

If viscoelastic constitutive equations are utilized, the additional boundary stress 

condition at the die exit must be specified. This boundary condition is given by 

both, flow in the die (upstream) and extensional flow in the drawing length 

(downstream). Thus, the accurate determination of this additional boundary stress 

value requires intensive numerical computation [72]. In the following paragraphs, 

a brief enumeration of approaches used in determination of these type of boundary 

conditions is provided. 

Anturkar and Co [52] in their study, using modified convected Maxwell model, 

estimated axial component of stress tensor, xx ,  as a mean stress value for 

fully-developed slit flow in a die of infinitely width. Silagy et al. [58] and [12] 

based on the works of Denn et al. [73] and Demay et al. [18, 74] assumed two 

different stress states at the end of the die. In the first case, an extra stress in 

machine direction, xx , is equaled to zero and thus the extra stresses are entirely 

relaxed due to the die swell, or the second which assumed the mean value of extra 

stress after flow in an infinite die with a rectangular cross section while the 

transversal extra stress, yy , is set to the value obtained from Newtonian solution. 

They found that initial stress conditions at the die have a little influence on the 

final film shape but the calculations were made only for low values of Deborah 

number. Iyengar and Co [22] have chosen different approach and instead of 

specifying axial stress component, they have set the ratio zz xx   at the value 

between two extreme cases for planar extensional flow and fully-developed slit 

flow in the die noting that the true stress ratio should have lied in their range. 

Iyengar [75] then reported that the both extreme cases with corresponding stress 

ratios provide very similar velocity and stress profiles. Debbaut at al. [37] in their 

viscoelastic study assumed initial stresses to be zero. Same as the approach in 

work of Smith [76]. 

For multilayer film casting analysis (based on the single-mode modified 

Giesekus model) Pis-Lopez and Co [70, 71] showed that if aspect ratio (defined 
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here as ratio of total film thickness at the die exit and drawing distance h0/L) is 

less than  0.05, the velocity and stress profiles converge to the same values does 

not matter whether the initial stress condition is based on the assumption of 

fully-developed slit flow or fully-developed planar extensional flow. In another 

study, utilizing multi-mode model approach, Denn [77] left the longest relaxation 

mode unspecified at the die exit and rest of the modes was set up with respect to 

this mode. In contrary, Christodoulou et al. [72] drawn that the shortest mode 

should be left unspecified with the reasoning that the longest mode p
xx( N )  is 

mainly determined by the flow inside the die, whereas the shorter modes p
xx( j )  

are determined by the external flow in the air gap. 

Beris and Liu [78, 79], in their study on fiber spinning for single mode 

UCM viscoelastic liquid, specified a die exit stress state via stress ratio of the 

normal to the axial stress, yy xx  , and not each component separately. This value 

has been approximated as the value under homogeneous steady extensional flow 

at an effective extensional strain rate. For viscoelastic multimode model, 

Denn [77] specified also p p
xx( j ) xx( N )   for j < N as extra condition to p p

yy( j ) xx( j )   

for all relaxation modes. 

Devereux and Denn [80] suggested the same distribution among partial stresses 

as in the case of fully-developed capillary flow with neglected radial partial 

stresses. Remaining initial stresses were adjusted in order to meet the downstream 

boundary condition (see Eq. 2.1.1). 

 

p
xx( j) j j

p N
xx(N)

j j
j 1

  



 

 
(2.1.1) 

 

Note that Gagon and Denn [81] simplified the aforementioned relation for 

wedge spectrum to form of 

 

p
xx( j) j

p
xx(N) N

 


 
 (2.1.2) 

 

2.2 Mathematical models 

Ideally, the proposed mathematical model should accommodate problem 

solution in three dimensions where all variables are dependent on all spatial 

coordinates and covers firstly, the development of the system over time, secondly, 

a non-isothermal conditions, thirdly, an influence of external forces (such as 

inertia and gravity) and finally, constitutive equations that can describe the 
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ultimate behavior of modelled polymer for given deformation and temperature 

history experienced by the polymer during the flow. The current problem is that 

consideration of all above mentioned factors in film casting modeling yields very 

complicated mathematical models, which cannot practically be solved by the 

existing mathematical tools. Therefore, different simplifying assumptions are 

applied to simplify the experimental reality leading to the film casting models that 

can be solved numerically in reasonable computational times. Those typical 

assumptions are provided bellow: 

 Reduction in dimensionality: 1D, 1.5D and 2D; 

 Isothermal conditions – constant temperature field 

 Non-transient description 

 Mechanically and thermally incompressible fluid 

 Excluded effects of inertia 

 Excluded effects of gravitational forces 

 Constant boundary conditions 

 Not realistic or simplified constitutive conditions 

 Neglected aerodynamic drag 

 Neglected surface tension 

 Neglected die swell 

 Neglected self-weight of the polymer 

 Neglected edge-effects 

 Excluded crystallization (temperature, flow-induced) 

 Neglected the sag of film in non-vertical installations (film curvature) 

 Effects from additional devices (air knife, vacuum box, electrostatic 

pinning) 

 

2.2.1 One-dimensional Film Casting Model of Infinite Width 

The first efforts to model extrusion film casting were dedicated to 

accommodate the basic behavior exhibited by a drawn polymer in the drawing 

zone [22, 50–52, 82]. This first approximation was based on an idea of the infinite 

film width. In this one-dimensional representation of flow kinematic, neck-in and 

edge-beading effects are not taken into account. Design of this model assumes 

that the velocity field can be described in the following way 

 
 x xv v x, t  

yv 0  
(2.2.1.3) 

that is, the flow deformation in the drawing region is mainly planar. 

Despite to this limitation, the one-dimensional model of infinite width can 

present a convenient framework for parametric studies with good approximation 
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of real cast lines where the die width is superior over the take-up length [10]. 

Responses of the system to the input changes, such as processing conditions or 

material parameters, might be more readily correlated to changes in the output, 

such as effects on film thickness or onset of draw resonance. Moreover, it can be 

stated in a close-form, especially for simple Newtonian fluids, thus its solution 

does not require employment of numerical tools.  

 

2.2.2 One-dimensional Film Casting Model of Varying Width 

To overcome limitation stemming from the assumptions taken for the infinite 

width model, one-dimensional film casting model with variable film width was 

proposed [12, 58]. This simplified model that retain the capability to cover film 

width reduction in drawing length at reduced dimensionality of resolved problem, 

is based on assumption that all velocity components are exclusive function of 

a position in a drawing length, x, at certain time, t, and vary linearly with respect 

to its corresponding direction. 

 Thus, velocity field is assumed in form of 

 
 x xv v x, t  

 yv yf x, t  
(2.2.2.4) 

and continuity equation yields 

  zv zg x, t   (2.2.2.5) 

However, based on the numerical simulations of Debbaut et al. [37] for 

viscoelastic fluids and experimental observations of Dobroth and Erwin [10], 

the flow in downstream is divided into regions where the central part of the film 

exhibits planar extensional flow whereas lateral part shows uniaxial extensional 

deformation flow that is not fully in compliance with taken assumption of linearly 

varied velocity component in thickness direction with thickness. 

 

2.2.3 Two-dimensional Film Casting Model 

The lower dimensional variants of film casting model can provide a reasonable 

estimate of draw resonance onset or neck-in phenomenon extent, if used with 

advanced constitutive equations, but cannot account for edge-bead formation. 

Therefore, the two-dimensional models having the ability to better describe 

a complex flow situation experienced by the polymer in drawing length were 

developed [34, 37]. Essential idea comes from the statement that the one 

dimension of the film is small in comparison to others [34], which is so-called the 

membrane hypothesis. Film thickness is much smaller than the film width and the 

take-up length, hence the velocity component in machine and transversal direction 
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can be assumed independent of thickness direction, that is, uniform across 

the thickness. 

Then, the velocity field in the casted molten film can be written in form of 

 
 x xv v x,y, t  

 y yv v x,y, t  
(2.2.3.6) 

and the continuity equation gives 

 
yx

z

vv
v z

x y

 
   

   

 (2.2.3.7) 
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THE AIMS OF THE DOCTORAL RESEARCH WORK 

The major goal of the doctoral research work is to firstly, derive viscoelastic 

extrusion film casting model utilizing 1.5D membrane approximation, modified 

Leonov model as the constitutive equation and energy equation coupled with an 

advanced crystallization kinetic (considering thermally as well as stress induced 

crystallization) and secondly, to develop stable numerical scheme allowing to 

solve the proposed model in order to reveal the complicated relationship between 

polymer melt rheology, die design, process conditions and undesirable neck-in 

phenomenon. The key aims can be formulated as following: 

 

 Validation of the proposed model predictions with literature experimental 

data for different polymer melts and processing conditions. 

 

 Elucidate the role of planar to uniaxial extensional viscosity ratio, 

extensional strain hardening, Deborah number and die exit stress state 

(quantified via second to first normal stress difference ratio, –N2/N1) on the 

neck-in phenomenon. 

 

 Quantification of the neck-in phenomenon via a simple dimensionless 

analytical equation. 

 

 Investigation the role of heat transfer coefficient, draw ratio, die exit 

temperature and flow induced crystallization on the production of flat 

polymeric membranes with specific attention to neck-in phenomenon. 
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3. Viscoelastic Modeling of Non-isothermal Extrusion 

Film Casting Process Considering Temperature and 

Stress Induced Crystallization 

 

3.1 Modified Leonov Model 

The utilized constitutive equation is based on heuristic thermodynamic 

arguments resulting from the theory of rubber elasticity [83–88]. In this approach, 

a fading memory of the melt is determined through an irreversible dissipation 

process driven by the dissipation term, b. From mathematical viewpoint, it is 

relating the stress and elastic strain stored in the material as: 

 
1

1,c 2,c

W W
2 c c

I I


  

        

 (3.1.8) 

where   is the stress, and W, the elastic potential, which depends on the invariants 

I1,c and I2,c of the recoverable Finger tensor, c , 

 
 

 

n 1 n 1

1,c 2,cI I3G
W 1 1 1

2 n 1 3 3

                                     

 (3.1.9) 

where G denotes linear Hookean elastic modulus,  and n are numerical 

parameters. Leonov assumed that the dissipative process acts to produce 

an irreversible rate of strain, 
p

e   

 
11,c 2,c

p

I I
e b c b c

3 3


   

        
      

 (3.1.10) 

which spontaneously reduces the rate of elastic strain accumulation. Here,   is 

the unit tensor and b stands for dissipation function defined by Eq. 3.1.12. This 

elastic strain, c , is related to the deformation rate tensor, D , as follows 

 
p

c c D D c 2c e 0        (3.1.11) 

where c  is the Jaumann (corotational) time derivative of the recoverable Finger 

strain tensor. In this work, the Mooney potential (i.e. n=0 in Eq. 3.1.9), and the 

dissipation function, b, proposed in [89] (see Eq. 3.1.12) have been employed. 
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  
 

 
1,c

1,c 1,c

1,c

sinh I 31
b I exp I 3

4 I 3 1

                 

 (3.1.12) 

Here,  and  are adjustable model parameters.  

  1,cI tr c  (3.1.13) 

   xx yy zztr c c c c    (3.1.14) 

     2 2

2,c

1
I tr c tr c

2
     (3.1.15) 

 
1 1 1

2,c xx yy zzI c c c      (3.1.16) 

Differentiating Eq. 3.1.9 with respect to the first and second invariant of 

the recoverable Finger tensor yields 

  

n

1,c

1,c

IW 1
G 1

2 3I

 
     

 (3.1.17) 

 

n

2,c

2,c

IW 1
G

2 3I

 
     

 (3.1.18) 

Combination of Eq. 3.1.8 with Eqs. 3.1.17–3.1.18 leads to the following 

expression for the extra stress tensor. 

  

n n

11,c 2,cI I
G c 1 c

3 3


                                 

 (3.1.19) 

 

3.2 Membrane Model of Film Casting 

In this Ph.D. thesis, the 1.5D membrane model developed by Silagy et al. [58] 

was used as the basic to model the extrusion film casting process. The model 

essentially features two hypotheses to facilitate the description of the stress and 

velocity field development in the film drawing. Firstly, the total stress in the film 

thickness direction is assumed to be equal to zero because this dimension is small 

compared to other dimensions and secondly, velocities in the width and thickness 

direction are allowed to vary linearly with y and z position, respectively, for the 

given x location, which represents a supplementary kinematic hypothesis 
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(formerly adopted in the work of Narayanaswamy [59] for the modeling of glass 

manufacturing by the float process) in order to reduce the dimensionality of the 

task. Even though, the dimensionality of the model can be considered as a unity 

(all model variables are x-direction dependent only), it possess the capability to 

predict both, the reduction in film thickness as well as film width shrinkage. From 

this point of view, the model might be considered as a pseudo 2D or 1.5D.  

Furthermore, the inertia, gravity, surface tension and aerodynamic drag are 

neglected in this model because they are usually much smaller in comparison with 

the stresses generated in the viscoelastic polymer melt. Finally, the original 

membrane model for EFC is based on the assumption of process isothermality, 

which can be justifiable for small enough drawing lengths and/or very high draw-

down speeds [19]. However, this assumption seems to be false under processing 

conditions, where the melt has enough time to cool down, i.e. fabrication of 

porous membranes [90–94]. Therefore, in this work, the process is treated as a 

non-isothermal considering a thermally induced crystallization as well as flow 

induced crystallization. The detailed description of the utilized model is provided 

below. 

 

3.2.1 Velocity Field 

The Cartesian system axes are directed as follows (Fig. 1): in-film-plane 

axes x and y, where x points in the streamwise direction and y is perpendicular 

onto it, and z axis is normal to the film xy plane with origin deployment in the 

cross-sectional center of gravity at the die exit. The dimensions of the film are 

denoted as follows: take up length is X, initial film half-width is L0, and initial 

half-thickness is e0. The intensity of film drawing is expressed in terms of draw 

ratio (DR) that relates the final tangential velocity of the film at the chill roll, u(X), 

to the film velocity at the die exit, u0. The quantities without a zero subscript 

denotes non-initial corresponding dimensions at any given x position. 

The influence of extrudate swelling on the casting process is assumed to be 

negligible here. Using the symmetry of the problem and the kinematic hypothesis, 

the complexity of the velocity field involved in the film drawing is reduced, where 

each of the components is the function of all spatial and time variables. In the 

resulting form, the velocity field for steady solution is approximated as follows: 

 

u u(x)

v v(x, y) yf (x)

w w(x, z) zg(x)



 

 

 (3.2.1.20) 

where u, v and w are the velocity components in the machine, transverse, and 

thickness direction, respectively. The deformation rate tensor, which is based on 

Eq. 3.2.1.20, takes the following form: 
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du 1 df 1 dg
y z

dx 2 dx 2 dx

1 df
D y f (x) 0

2 dx

1 dg
z 0 g(x)

2 dx

 
 
 
 
 
 
 
  

 (3.2.1.21) 

Since the polymer flow in EFC is mainly extensional and in an effort to increase 

simplicity, the shear rate components can be neglected in favor of extensional 

ones in Eq. 3.2.1.21, which leads to the following final expression for the 

deformation rate tensor:  

  

 

du
0 0

dx

D 0 f x 0

0 0 g x

 
 
 

  
 
 
 

 (3.2.1.22) 

The film thickness is constant throughout the film width due to the assumed 

velocity field, where the v and w velocity components are dependent on x variable 

only and are allowed to vary linearly over the film width and thickness, 

respectively, due to the applied Narayanaswamy’s supplementary kinematic 

hypothesis as mentioned above. 

 

3.2.2 Continuity Equation  

The continuity equation requires the conservation of mass at any given 

streamwise position and with the incompressibility hypothesis takes the following 

form. 

    
d d

eL eLu 0
dt dx

   (3.2.2.23) 

Since the transient solution of the equation is not an objective of this study, the 

derivative with respect to time can be neglected. For steady state solution, 

the derivative with respect to time is 

  
d

eL 0
dt

  (3.2.2.24) 

and thus, the volumetric flow rate at the die exit position and at any given 

streamwise position is given by Eq. 3.2.2.25 and Eq. 3.2.2.26, respectively.  
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 0 0 0e L u Q  (3.2.2.25) 

      e x L x u x Q  (3.2.2.26) 

It is important to mention that the volumetric flow rate Q here corresponds to 

1/4th of the cross-section only due to the process symmetry as show in [32]. 

 

3.2.3 Momentum Conservation Equation 

Considering the membrane approximation for the thin film in the presence of a 

constant drawing force, the stresses are constant over the cross section of the film, 

which leads to the force balance having the following form 

  xx

d dF
Le 0

x dx
    (3.2.3.27) 

Neglecting gravity, inertia, aerodynamic friction and surface tension forces, the 

drawing force becomes x-direction independent, which is fully balanced by the 

stresses generated in the film. 

 xxF const Le    (3.2.3.28) 

In this equation, xx  stands for the first diagonal component of the total stress 

tensor,   , which is defined via the extra stress tensor,  , as follows 

 

xx

yy

zz

p 0 0

p 0 p 0

0 0 p

   
 

          
 

    

 (3.2.3.29) 

where p stands for the isotropic pressure,   is the unity tensor. As it can be seen 

from Eq. 3.2.3.29, the diagonal components of the total stress tensor are defined 

as 

 

xx xxp      

yy yyp      

zz zzp      

(3.2.3.30) 

The membrane approximation requires zero value of the thickness-wise 

component of total stress tensor, zz 0  , which leads to 

 zz0 p     (3.2.3.31) 
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i.e. 

 
zz p   (3.2.3.32) 

Substituting Eq. 3.2.3.32 back into expression for stress components 

Eq. 3.2.3.30, the hydrostatic pressure term is eliminated, which leads to the 

following final expression for the diagonal components of the total stress tensor 

 

xx xx zz      

yy yy zz      

zz 0   

(3.2.3.33) 

After substitution of xx , which is given by Eq. 3.2.3.33, into Eq. 3.2.3.28, 

the final form of the force balance equation is obtained 

  xx zz Le F     (3.2.3.34) 

 

3.2.4 The Stress-free Surface Boundary Condition 

Assuming the surface tension and air drag are negligible, the net force per unit 

surface at the film free surface is equal to zero: 

 n 0   (3.2.4.35) 

where the n is the unit vector normal to the free film surface. This yields the 

following expression relating the stress state of the film with the film half-width 

at given x position: 

 

2
yy

xx

dL

dx

 
 
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 (3.2.4.36) 

 

3.2.5 The Kinematic Free-surface Boundary Condition 

The fluid is enclosed in the boundaries of the free surface, which can be 

expressed as 

 u n 0   (3.2.5.37) 

where u is the tangential velocity at the film-air interface. Combination of 

Eq. 3.2.5.37 with the equation of continuity leads to  
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    
dL

u x f x L 0
dx

   (3.2.5.38) 

    
de

u x g x e 0
dx

   (3.2.5.39) 

where  f x  and  g x  are components of the deformation rate tensor 

(see Eq. 3.2.1.22) in the width and thickness direction, respectively, which can 

simply be expressed as 

  
 u x dL

f x
L dx

  (3.2.5.40) 

  
 u x de

g x
e dx

  (3.2.5.41) 

 

3.2.6 Dimensionless Transformation 

For the sake of simplicity and scaling purposes, the dimensionless 

transformation has been introduced into the previously derived equations (having 

similar form as in [58]). Corresponding dimensionless quantities are denoted here 

with the overline symbol. Dimensionless transformation for the extra stress tensor 

and total stress tensor is defined here as 

 ii 0 0
ii

e L

F


   (3.2.6.42) 

 ii 0 0
ii

e L

F


   (3.2.6.43) 

whereas the dimensionless spatial dimensions and streamwise velocity 

component are 

 
x

x
X

  (3.2.6.44) 

 
0

e
e

e
  (3.2.6.45) 

 
0

L
L

L
  (3.2.6.46) 
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0

u
u

u
  (3.2.6.47) 

Dimensionless numbers, such as draw ratio, DR, Deborah number, De, aspect 

ratio, A, and dimensionless force, E, are defined as follows 

 
0

u(X)
DR

u
  (3.2.6.48) 

 0u
De

X


  (3.2.6.49) 

 
0

X
A

L
  (3.2.6.50) 

 
0 0 0

1 FX

E G e L u



 (3.2.6.51) 

Introducing the dimensionless transformation into the continuity equation 

(Eq. 3.2.2.26) and momentum conservation equation (Eq. 3.2.3.34) leads to the 

following dimensionless implicit forms 

 eLu 1  (3.2.6.52) 

  xx zz Le 1     (3.2.6.53) 

Substitution of Eq. 3.2.6.52 into Eq. 3.2.6.53 gives 

  xx zz u 0      (3.2.6.54) 

and differentiating Eq. 3.2.6.52 and Eq. 3.2.6.54 with respect to x variable, one 

can obtain 

 
1 de 1 dL 1 du

0
e dx L dx u dx

    (3.2.6.55) 

 xx zzd d du
0

dx dx dx

 
    (3.2.6.56) 
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After rearrangement, the derivative of the dimensionless film half-thickness 

and axial velocity with respect to x are finally defined as 

 
de 1 dL 1 du

e
dx L dx u dx

 
   

 
 (3.2.6.57) 

 xx zzdu d d

dx dx dx

 
   (3.2.6.58) 

The dimensionless forms for  f x  and  g x  functions, which were derived 

from the kinematic free-surface boundary condition and appear in the deformation 

rate tensor, are the following 

  0

0

L
f f x

u
  (3.2.6.59) 

  0

0

e
g g x

u
  (3.2.6.60) 

Finally, the dimensionless transformation for the x-direction derivative of the 

film half-width (arising from Eq. 3.2.3.33 and Eq. 3.2.4.36) yields 

 yy zz

xx zz

dL
A

dx

  
 

  
 (3.2.6.61) 

 

3.2.7 Extrusion Film Casting Model for the Modified Leonov Model         

To combine the modified Leonov constitutive equation and the extrusion film 

casting model equations, it is necessary to derive the equation for particular stress 

development along the x axis. The relationship between the dimensionless stress 

and the recoverable strain, imposed from the modified Leonov model (Eqs. 3.1.8 

and 3.1.19), can be described by the following formula (for the case of the 

Mooney potential, i.e. when n=0 and β≠0): 

 
1

ii ii ii ii

E E E
c c c

De De De

       (3.2.7.62) 

Differentiating this equation with respect to x leads to 

 
ii ii ii ii

2
ii

d E dc E dc E 1 dc

dx De dx De dx De dxc

 
      

 
 (3.2.7.63) 
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where iidc dx  stands for the x-direction derivative of the recoverable strain 

tensor. This term is defined by Eq. 3.1.11 and for each component of the 

recoverable strain tensor it takes the following form: 

 xx
xx x

dc 1 du 2b
2c Z

dx u dx u
   (3.2.7.64) 

 yy

yy y

dc 1 dL 2b
2c Z

dx L dx u
   (3.2.7.65) 

 zz
zz z

dc 1 de 2b
2c Z

dx e dx u
   (3.2.7.66) 

where b , iZ  and pX  are defined as  

  
 

 
1,c

1,c 1,c

1,c

sinh I 31
b I exp I 3

4De I 3 1

                 

 (3.2.7.67) 

  1
i ii ii ii pZ c c c X    (3.2.7.68) 

  1 1 1
p xx yy zz xx yy zz

1
X c c c c c c

3

         (3.2.7.69) 

Combination of Eq. 3.2.6.58 and Eq. 3.2.7.63 leads to the dimensionless 

streamwise deformation rate, which takes the following form 

 

 

 

 

x z x z

z x zz2 2
zz xx zz

zz xx
xx zz xx zz

xx zz

b Z Z Z Z

1 1 u dL
b Z Z c 1

L dxc c cdu

dx c c Deu
c c c c

2Ec c

     
 

   
        

   
  

      
 

 
(3.2.7.70) 

Listed equations in sections 3.2.1–3.2.7 represent the basic isothermal 

viscoelastic 1.5D membrane model based on constitutive equation of the Leonov 

model. In order to enhance model into a non-isothermal variant with capability to 

predict crystallization, the energy equation with an appropriate crystallization 

kinetics has to be incorporated as described in the following paragraph. 
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3.2.8 Energy Equation 

The energy balance equation [21] takes the following form and accounts for the 

temperature change, crystallinity and flow dependency of melt viscosity. 

 
 a c

p p

2HTC T T LdT H dX

dx C m C dx

 
   (3.2.8.71) 

where, the L(x) is film half-width, HTC is heat transfer coefficient, Cp is specific 

heat capacity, m  is mass flow rate in quarter-cross-section, ΔH is latent heat of 

crystallization, T(x) and Ta is melt and ambient air temperature, respectively, and 

finally Xc(x) stands for content of crystallinity in the polymer volume. 

Heat transfer coefficient was chosen to be a constant in this model as 

a simplification representing a total heat exchange with the surrounding 

environment. The temperature dependence of melt relaxation time, λ, is described 

by Arrhenius form with a constant activation energy Ea as follows  

 T 0     (3.2.8.72) 

 
a

T

r

E 1 1
exp

R T T

  
    

  
 

(3.2.8.73) 

where λ0 denotes melt relaxation time at the die exit, R is universal gas constant 

and Tr is reference melt temperature. 

 

Crystallization kinetics 

The crystallization kinetics model adopted in this doctoral thesis was originally 

drawn by Ziabicki [95, 96] and later modified by Lamberti [97]. The quiescent 

conditions are defined as 

 
0

m mqT T  (3.2.8.74) 

On condition that, the flow induced crystallization is not included, the polymer 

melting temperature and flow induced equilibrium melting temperature are equal. 

The volume fraction of crystallized phase, χc, and function P(t) expressing the 

non-linear description of crystallinity evolution, derived according time as 

  
 

  cnc
c

eq

X t
t 1 exp P t

X
        (3.2.8.75) 

where K(t) is crystallization kinetics constant representing crystallization rate, Xeq 

is the equilibrium volume content of crystallinity (maximum in a crystal phase 
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that melt can possess) and constant nc stands for a type of nucleation and crystal 

evolution. After differentiation with respect to time, the time-evolution formula is 

 
 

       c cn n 1c
eq

dX t dP t
X exp P t n P t

dt dt


           (3.2.8.76) 

In the simplified form, the model kinetics proposed by Ziabicki [95, 96] and 

adopted in this work is as follows 

    
d

K t P t
dt

  (3.2.8.77) 

 
  c1/n

thK K 1 TZ   
(3.2.8.78) 

Here, Kth term is responsible for the low cooling rate crystallization, κ1, κ2 and 

Ec are material parameters determined from isothermal test, R is gas constant and 
0

mqT  denotes equilibrium crystallization temperature. Bath and Aath are material 

parameters included into the model by Lamberti considering the cooling history 

and promoting the model to be capable to describe a crystallinity evolution at high 

cooling rates. 

 
 

 

 
 

2

m mc
th 1 22

mm

T T T TE
K exp exp

RT T T TT

   
          

 (3.2.8.79) 

Effect of cooling rate on crystallization kinetics constant is covered by 

non-isothermal function, Z, taking form of 

 
 

 

ath

5
A m c

ath 5

m

T E
Z B T exp

RTT T T

 
   

 
 (3.2.8.80) 

where, cooling rate is marked as T , the derivative of the film temperature with 

respect to time, t. The formula for the transition from time to spatial coordinates 

is following 

 
dT dT

T u
dt dx

   (3.2.8.81) 

After its application on Eq. 3.2.8.76 with dimensionless transformation 

introduced in section 3.2.6 and rearrangement, the final form of equation for the 

crystallinity evolution in dimensionless spatial coordinates demands 

 
 

    
 c cn n 1c

eq c

0

dX x dP x X
X exp P x n P x

dx dx uu


         (3.2.8.82) 
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and semi-dimensionless form of energy equation, Eq. 3.2.8.71, is then given as 

 
 a c

p p

2HTC T T LXdT H dX

dx C m C dx

 
   (3.2.8.83) 

 

Effect of crystallinity on viscosity 

Beside the effect of temperature on the melt relaxation time, the effect of 

crystallinity on viscosity is included into the model through the function µXc that 

acts directly on the initial elastic modulus G0; this approach was presented by 

Titomanlio in [98]. 

  
cX c 0G X G   (3.2.8.84) 

This S-shaped function remains unity as the amount of crystallinity in volume 

is low and at the certain point starts to deviate and sharply raise simulating the 

phase transition from melt to the solid state: 

  
cX c m

c

h
X 1 f exp

X

 
    

 
 (3.2.8.85) 

It is worth to note that Eq. 3.2.6.54 is no more globally satisfied as in the 

original model proposal [58] where modulus G was taken as a constant and from 

now on must be treated as follows 

 
xx zz(X) (X) u(X)

xx zz0 0 0
d d du 0

 
        (3.2.8.86) 

 

Flow-induced crystallization 

Effect of flow on crystallization is described via molecular strain that increases 

both growth and nucleation rates. In the used formulation [99], melting 

temperature is continuously modified according to the current molecular strain as 

follows 

  0 F 1
m F mq 3 F 4

2

1 S A
T (S ) T tanh 1 A S A

2 A

  
     

   

 (3.2.8.87) 

where 0
mqT  and Tm(SF) is equilibrium and quiescent melting temperature, and A1-4 

are experimentally determined parameters, SF is stretch function expressed here 

in the following form  

 
F 1,cS I 3   (3.2.8.88) 
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In the proposed formula, the molecular stretch is measured over the first invariant 

of recoverable Finger tensor I1,c. 

 

3.2.9 Boundary Conditions 

The complex and essential explicit model equations constituted in the previous 

section, namely Eqs. 3.2.6.57, 3.2.6.61, 3.2.7.70, 3.2.7.64, 3.2.7.65, 3.2.7.66 has 

to be solved with the appropriate set of the boundary conditions. Detailed 

description of the utilized boundary conditions is provided below.  

 

Upstream boundary conditions: 

Taking advantage of the dimensionless transformation, the initial half-width, 

half-thickness, and streamwise velocity are equal to one. 

  u 0 1  (3.2.9.89) 

  e 0 1  (3.2.9.90) 

  L 0 1  (3.2.9.91) 

Due to the employment of the energy equation together with crystallization 

kinetics equation, two additional conditions for initial melt temperature and 

crystallinity content (assumed to be a zero) are invoked.  

 DIET(0) T  (3.2.9.92) 

 cX (0) 0  (3.2.9.93) 

Since a viscoelastic constitutive equation is involved in this study, it is 

necessary to define initial boundary conditions for all three diagonal components 

of the extra stress tensor  0xx ,  0yy  and  0zz  by using Eq. 3.2.7.62. To do 

that, diagonal components of the recoverable strain tensor at the die exit must be 

determined as the first by solving the following set of equations 

   
    1 1

xx zz zz xx

E
c c 1 c c 1 0

De

       
 

 (3.2.8.94) 

 xx yy zzc c c 1  (3.2.8.95) 

 
 1 1

zz yy yy yy zz zz
2

1

E c c c c c cN

DeuN

      
    (3.2.8.96) 
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Eq. 3.2.8.94 arises from the momentum conservation equation 3.2.3.34 by 

combination of Eqs. 3.2.6.54, 3.2.7.62 and 3.2.9.89 whereas Eq. 3.2.8.95 

represents the incompressibility condition for the given flow situation. 

Eq. 3.2.8.96 represents normal stress difference ratio at the die exit, which is 

defined as the ratio of the secondary normal stress difference and primary normal 

stress difference 

 
   

   
zz yy2

1 xx zz

0 0N

N 0 0

  
  

  
 (3.2.9.97) 

note that, in this equation    xx zz0 0 1     as the result of Eq. 3.2.6.54 and 

Eq. 3.2.9.89. As it can clearly be seen from Eq. 3.2.8.96, the −N2/N1 ratio, which 

characterizes the polymer melt stress state at the die exit region, has to be provided 

in order to calculate the initial boundary conditions for the extra stress tensor.  

 

Downstream boundary conditions: 

Downstream boundary condition, draw ratio, is prescribed as the desired value 

that is satisfied by a priori unknown magnitude of the drawing force. 

  u X DR  (3.2.9.98) 

 

3.3 Numerical Scheme 

To solve the full set of first-order ordinary differential equations, the numerical 

scheme based on the 4th order Runge-Kutta method implementing adaptive 

step-size control was adopted. Process of calculation is commenced by guessing 

a value of drawing force followed by iterative determination of the stress 

boundary condition at the die through the components of the recoverable elastic 

strain tensor to satisfy Eqs. 3.2.8.94, 3.2.8.95 and 3.2.8.96 along with the other 

boundary conditions for the die exit region, that are constant with the force, and 

thus do not require evaluation in every iteration (Eqs. 3.2.9.89, 3.2.9.90, 3.2.9.91 

and −N2/N1 ratio). Then the main set of eight differential equation is solved in the 

following order: crystallization kinetics including flow induced crystallization 

equations (Eq. 3.2.8.82), energy of equation (Eq. 3.2.8.83), film half-width 

(Eq. 3.2.6.61), axial velocity (Eq. 3.2.7.70), film half-thickness (Eq. 3.2.6.57) and 

components of the recoverable elastic strain tensor (Eqs. 3.2.7.64–3.2.7.66). 

Depending on wheatear the desired draw ratio is achieved, the initially estimated 

drawing force was iteratively updated (increased/decreased) for every following 

calculation until convergence using the bisection method. Oscillations in 

the temperature profile development, that were occasionally present in the 

calculations inflicting the instability of computation, were fixed by applied 
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stabilizing method of weighting the result of Eq. 3.2.8.83 for actual and previous 

position x. Due to a geometrical symmetry of the film, only 1/4th of the film 

cross-section was used in the calculation as showed in [32]. This 

basic computational scheme for the determination of unknown process variables 

was looped according demands of currently conducted parametric studies and 

eventually complemented by module for a grid linear interpolation to create 

parametric maps. It was preferred to develop the solver itself in the C++ 

programming language, to avoid a black box effect, which could have appeared 

in the case of using a built-in solver in any other commercial 

mathematical-modeling software. To visualize the obtained data for particular 

solutions, the solver was coupled with GNUPLOT plotting software for automatic 

graph generation. Typical computational time for one calculation of prescribed 

DR was about 1 minute on the PC with the following hardware 

specifications: CPU: Intel Core i7-7700 at 3.60 GHz, RAM: 32 GB DDR4, 

GPU: AMD Radeon Pro WX 4100 with 4 GB of video memory, SSD: HP Z 

TurboDrive G2 512 GB. A schematic representation of the utilized numerical 

scheme is provided in Fig. 6. 
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Fig. 6: Flow chart of iteration scheme used to solve of non-isothermal viscoelastic film 

casting model. 
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SUMARIZATION OF THE RESEARCH PAPERS 

 

PAPER I–IV 

Development of viscoelastic non-isothermal film casting model including 

temperature and stress induced crystallization 

 

The entire derivation of viscoelastic non-isothermal extrusion film casting 

model considering temperature and stress induced crystallization is provided in 

the section 3 of this doctoral thesis. 

 

PAPER I–II 

Effect of die exit stress state, Deborah number, uniaxial and planar 

extensional rheology on the neck-in phenomenon in polymeric flat film 

production 

 

The effect of second to first normal stress difference ratio at the die 

exit, −N2/N1, uniaxial extensional strain hardening, E,U,max 0η 3η , 

planar-to-uniaxial extensional viscosity ratio, E,P E,Uη η , and Deborah number 

(via changing the drawing distance, X), De, on the neck-in, NI, has been 

investigated via viscoelastic non-isothermal modeling utilizing 1.5D membrane 

model [58] and a single-mode modified Leonov model as the constitutive equation 

[84, 89]. Based on the performed parametric study, it was found that an increase 

in −N2/N1 ratio and De increases both, the maximum attainable normalized 

neck-in, NI*=NI/X, as well as its sensitivity to E,P E,Uη η . There exists 

a threshold value for Deborah number and E,U,max 0η 3η , above which, the NI* 

starts to be strongly dependent on the die exit stress state, −N2/N1. It was found 

that such critical De decreases if −N2/N1, E,U,max 0η 3η  increases and/or 

E,P,max E,U,max

0 0

η η

4η 3η
 decreases. Numerical solutions of the 1.5D membrane 

viscoelastic model, utilizing modified single-mode Leonov model as the 

constitutive equation, were successfully approximated by a dimensionless 

analytical equation (Eq. 99) expressing the NI* with E,U,max 0η 3η , E,P E,Uη η , 

−N2/N1 and De as follows 
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 

 

1

2

E,P
1 1

*
E,U

E,U,max

2 2
0

A 1 exp De 1
1

NI

A 1 exp De
3





  
      

       
  

       

 (99) 

with  defined as  

  E,U,max2
1 2 3 4

1 0

ηN
δ 1 ψ arctan ψ arctan ψ tanh ψ De

N 3η

  
      

   

 (100) 

where A1=0.593, α1=1073.742, φ1=2.113, A2=0.471, α2=99.757, φ2=1.162, 

θ=7.43, ψ1=1.027, ψ2=−0.849, ψ3=0.514, ψ4=3.953. 

Suggested equation was tested by using the experimental data taken from [42], 

[23, 25, 28] and [7] for five different polyethylenes where 0.011 De 0.253  , 

E,P

E,U

η
0.825 1.910

η
  , 

E,U,max

0

η
2.047 10.096

3η
    and 2

1

N
0.017 0.680

N
   . As it 

can be seen in Fig. 7a, the proposed equation can describe for the given polymer 

melts and processing conditions the experimental data very well within the whole 

range of investigated Deborah numbers. 

   

Fig. 7: Normalized maximum attainable neck-in value, NI*, as the function of 

Deborah number for LDPE 170A, PE-A, PE-B, PE-C, and LDPE C polymers for 

the processing conditions summarized in Table 6 in [27]. Experimental data 

(taken from [23, 25, 28], [7] and [42]) and proposed analytical model predictions 

(Eq. 99) are given here by the open and filled symbols, respectively. (7a) −N2/N1 

is given by the modified Leonov model predictions for particular die exit shear 

rates, which are provided in Table 7 in [27] for each individual case, (7b) −N2/N1 

is considered to be constant, equal to 0.2. 

7a) 7b) 
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Interestingly, the neck-in predictions for Deborah numbers larger than 

0.1 became unrealistic, if the −N2/N1 at the die exit region is not taken into 

account, which confirms the existence of critical Deborah number, above which, 

the neck-in phenomenon starts to be strongly dependent on the die exit stress state 

(see Fig. 7b). It is believed that the obtained knowledge together with the 

suggested simple analytical model can be used for optimization of the extrusion 

die design (influencing flow history and thus die exit stress state), molecular 

architecture of polymer melts and processing conditions to suppress neck-in 

phenomenon in a production of very thin flat films. 
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PAPER III 

Effect of heat transfer coefficient, draw ratio and die exit temperature on 

the production of flat iPP membranes 

 

In this part, stable numerical scheme has been developed for 1.5D film casting 

model utilizing viscoelastic modified Leonov model as the constitutive equation 

[58, 84, 89] and energy equation coupled with crystallization kinetics of 

semicrystalline polymers taking into account actual film temperature as well as 

cooling rate  [95–97]. Model has been successfully validated on the experimental 

data for linear isotactic polypropylene taken from the open literature [100]. 

       

Fig. 8: Comparison between experimental data for iPP T30G (TDIE=200°C) and 

given processing conditions (De=6·10-4, DR=34.7, X=0.4 m) taken from [100] 

and model predictions for dimensionless drawing distance variables considering 

constant heat transfer coefficient, HTC=16 J·s-1·K-1·m-2. (8a) Dimensionless Final 

Half-width, (8a) Film crystallinity.  

Aspect ratio, A, (0.25–4), draw ratio, DR, (3–140), heat transfer coefficient, 

HTC, (1.5–28 J·s-1·K-1·m-2) and die exit melt temperature, TDIE, (200, 225 

and 250°C) were systematically varied in the utilized model in order to understand 

the role of process conditions on the onset of crystalline phase development in 

production of iPP flat porous membranes via cast film process. It was found that 

numerically predicted crystallization onset border in A vs. DR dependence for 

given HTC and TDIE (see example in Fig. 9a) can be successfully approximated 

by the following simple analytical equation: 

   Xc DIEk (HTC,T )
Xc DIEA exp q (HTC,T ) DR  (101) 

where qXc(HTC, TDIE) and kXc(HTC, TDIE) are given as 

8b) 8a) 
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    k DIE kT

Xc DIE k DIE kk (HTC,T ) T HTC
 

     (102) 

      Xc DIE q DIE q q DIE qq (HTC,T ) T ln HTC T        (103) 

These equations utilize 3 independent variables (DR, HTC and TDIE) and 

8 parameters (αk=−0.0056, βk=0.3421, γk=0.0077, δk=−1.2102, αq=10-4, 

βq=−1.0453, γq=0.0089, δq=−0.3079). 

 Utilizing isothermal as well as non-isothermal numerical calculations, it was 

possible to determine processing conditions (in terms of DR, A and HTC at 

TDIE=200°C) for linear iPP, for which isothermal simulations are too simplistic 

and therefore the neck-in phenomenon cannot be predicted realistically (see 

Fig 9b).  

    

Fig. 9: Effect of draw ratio and heat transfer coefficient (see numbers 

in J·s-1·K-1·m-2 provided at each data set) on the critical aspect ratio for linear iPP 

at die exit temperature equal to 200°C. (9a) Crystallization onset borders defining 

conditions for film production with (area above the border symbols) and without 

(area bellow the border symbols) the crystallized phase, (9b) Isothermality 

boundaries below which the non-isothermal and isothermal calculations gives 

practically the same neck-in values. 

It was possible to find out the following analytical approximation for the 

“isothermality boundary” in A vs. DR dependence for different HTCs, which is 

applicable within the following range of processing variables: DR 3 140  , 

A 0.25 4   and HTC 4 30    J·s-1·K-1·m-2. 

   isok (HTC)
isoA exp q (HTC) DR  (104) 

where kiso(HTC) and qiso(HTC) are defined as  

9a) 9b) 
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  iso iso isok (HTC) ln HTC    (105) 

  iso iso isoq (HTC) ln HTC     (106) 

These equations utilize 2 independent variables (DR, HTC) and 4 parameters 

obtained by numerical data fitting (iso=0.067, iso=0.0406, iso=−0.8479, 

iso=−0.9701). 

Finally, the effect of A, DR, HTC and TDIE on the dimensionless film half-width 

and axial velocity, temperature and crystallinity (all as the function of 

dimensionless drawing distance) was systematically investigated via 

non-isothermal simulations for linear iPP. It was found that neck-in can be 

reduced if A or DR decreases or if HTC or TDIE increases. It has also been showed 

that produced film crystallinity increases if A increases or if DR or TDIE decreases. 

The most interestingly, it has been revealed that if the HTC increases above some 

critical value, film crystallinity increases, reaching the maximum and then 

decreasing. This suggests that there exists optimum HTC for given material and 

processing conditions, at which the amount of crystalline phase is maximal. It is 

believed that the utilized numerical model together with suggested stable 

numerical scheme as well as obtained research results can help to understand 

processing window for production of flat porous membranes from linear iPP 

considerably.  

 

PAPER IV 

Viscoelastic simulation of extrusion film casting for linear iPP including 

stress induced crystallization 

 

Here, 1.5D film casting membrane model proposed by Silagy [58] was 

generalized considering single-mode modified Leonov model as the viscoelastic 

constitutive equation [84, 89], energy equation , constant heat transfer coefficient, 

advanced crystallization kinetics taking into account the role of temperature, 

cooling rate [95–97] and molecular stretch [98], crystalline phase dependent 

modulus [65] and temperature dependent relaxation time [8]. The model has been 

successfully validated for the linear isotactic polypropylene by using suitable 

experimental data taken from the open literature as it can be seen in Fig. 10. 

It has been found that for the given processing conditions, utilization of flow 

induced crystallization significantly improves predictions for the film temperature 

and crystallinity whereas its effect on the neck-in phenomenon and axial velocity 

profile is predicted to be small. Consequent parametric study has revealed that 

inclusion of FIC in the model allows to predict realistic plateau in the temperature 

profile as well as monotonic increase in the film crystallinity for the increased 
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HTC (see Figure Fig. 10b). It was also shown that there is some threshold HTC 

value (about 12 J·s-1·K-1·m-2 for the studied iPP and given processing conditions), 

above which melting temperature is changed considerably, abruptly and more 

closely to the extrusion die due to FIC (see Fig. 11a). 

    

Fig. 10: Comparison between film casting model predictions with and without 

consideration of Flow Induced Crystallization, FIC, and experimental data taken 

from [66], HTC=31 J·s-1·K-1·m-2. (10a) Temperature profile, (10b) Crystallinity 

profile. 

    

Fig. 11: Predicted effect of HTC on the film crystallinity (left) and melting 

temperature (right) for iPP at the reference processing conditions. 

10a) 10b) 

11a) 11b) 
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THE THESIS CONTRIBUTION TO SCIENCE AND 

PRACTICE 

 

The proposed model and numerical scheme for the viscoelastic, non-isothermal 

extrusion film casting modeling utilizing a 1.5D membrane model, a modified 

Leonov model and an advanced crystallization kinetics together with the findings 

clarifying the fundamental role of variety dimensionless variables (such as planar 

to uniaxial extensional viscosity ratio, extensional strain hardening, Deborah 

number, second to first normal stress difference ratio at the die exit, draw ratio, 

heat transfer coefficient and flow induced crystallization) can be used for material, 

die design and process conditions optimization in order to minimize unwanted 

neck-in phenomenon as well as to optimize the extrusion film casting process for 

different applications of daily and technical use (such as for example separator 

films for batteries in mobile devices and electric vehicles, foils for capacitors, 

optical membranes for liquid crystal displays, air and vapor barriers, magnetic 

tapes for storage of audio video content, packing for consumer products, plastic 

bags or as product for further processing by other technologies). 

The suggested numerical scheme together with the proposed stabilization can 

be used as the good basic for the viscoelastic non-isothermal modeling of 

advanced and industrially important polymer processing technologies, in which 

flow induced crystallization plays the key role.   

 

 

 



 

52 

CONCLUSION 

First part of this work summarizes the current state of knowledge in area of 

polymeric film production via extrusion film casting process and different types 

of flow instabilities occurring in this technology, such as neck-in, edge beading 

and draw resonance. Specific attention has been paid to introduction of different 

approaches for the film casting modeling based on the open research literature. 

In the second part of this work, generalized 1.5D film casting membrane model 

utilizing single-mode modified Leonov model as the viscoelastic constitutive 

equation and energy equation coupled with advanced crystallization kinetics 

(taking into account the role of temperature, cooling rate and molecular stretch) 

has been proposed and successfully tested against relevant experimental data 

taken from the open literature. By using of the proposed model, it was possible to 

clarify the role of variety dimensionless variables such as planar to uniaxial 

extensional viscosity ratio, extensional strain hardening, Deborah number, second 

to first normal stress difference ratio at the die exit, draw ratio, heat transfer 

coefficient and flow induced crystallization on the production of polymeric flat 

films. The key research findings are summarized below:  

 It was found that the film casting modeling by using multi-mode XPP 

model and modified Leonov model is comparable for the given LDPE 

polymer and processing conditions even if, surprisingly, single-mode 

version of the Leonov model was used. The consequent parametric study 

revealed that firstly, if planar to uniaxial extensional viscosity ratio 

decreases or uniaxial extensional strain hardening increases, intensity of 

normalized neck-in as well as its sensitivity to draw ratio decreases and 

secondly, an increase in the second to first normal stress difference ratio 

at the die exit, −N2/N1, and Deborah number increases both, the 

normalized neck-in as well as its sensitivity to planar to uniaxial 

extensional viscosity ratio. It has also been found that normalized 

neck-in can be correlated to all the above mentioned variables via a 

simple dimensionless analytical equation. This correlation can provide 

detailed view into the complicated relationship between polymer melt 

rheology, die design, process conditions and undesirable neck-in 

phenomenon. Obtained results have been validated against literature 

experimental data for different polyethylene melts and processing 

conditions. 

 

 It was revealed that there exists critical Deborah number (equal to 

about 0.1), above which, the neck-in phenomenon starts to be strongly 

dependent on the die exit stress state, −N2/N1. 

 



 

53 

 

 It was found that numerically predicted crystallization onset border in 

A vs. DR dependence for given HTC and TDIE can be successfully 

approximated by the simple analytical equation. 

 

 It was possible to determine processing conditions for linear isotactic PP 

(expressed numerically or via simple analytical approximation), for 

which isothermal simulations are too simplistic and therefore the neck-in 

phenomenon cannot be predicted realistically. 

 

 It was found that normalized neck-in can be reduced if A or DR decreases 

or if HTC or TDIE increases. 

 

 It has been found that for the processing conditions, in which the cooling 

rate is very high, utilization of the flow induced crystallization 

significantly improves predictions for the film temperature and 

crystallinity whereas its effect on the neck-in phenomenon and axial 

velocity profile is predicted to be small. Consequent parametric study 

has revealed that inclusion of flow induced crystallization in the model 

allows to predict realistic plateau in the temperature profile as well as 

monotonic increase in the film crystallinity for the increased HTC. 

 

 It was shown that there is some threshold HTC value, above which the 

melting temperature is changed considerably, abruptly and more closely 

to the extrusion die due to flow induced crystallization. 
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a b s t r a c t

In this work, viscoelastic, isothermal extrusion film casting simulations have been performed utilizing a
1D membrane model and the viscoelastic modified Leonov model as the constitutive equation in order to
elucidate the role of planar to uniaxial extensional viscosity ratio, extensional strain hardening and
Deborah number on the neck-in phenomenon. Based on the performed theoretical parametric study, it
has been found that neck-in can be correlated to all the above mentioned variables via a simple dimen-
sionless analytical equation. This correlation can provide detailed view into the complicated relationship
between polymer melt rheology, die design, process conditions and undesirable neck-in phenomenon.
Obtained results have been validated against literature experimental data for different polyethylene
melts and processing conditions.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Extrusion film casting (EFC) is a continuous, high-speed manu-
facturing process during which a thin, highly oriented polymer film
is produced [1,2]. In this widely used and dominant process, a mol-
ten polymer is extruded through a slit die with a narrow gap to
form a thick sheet of polymer that is subsequently intensively
stretched in the machine direction by means of a rotating take-
up drum, whose linear velocity is higher than the extrusion one,
providing the macromolecular orientation and reduction in the
sheet thickness and finally the dimensions of the created thin film
are fixed by cooling down on a chill roll. The intensity of film
drawing is usually measured by means of draw ratio defined as a
linear velocity at the take-up drum divided by polymer exit veloc-
ity at the extrusion die.

In the section where the formation of the thin film takes place,
i.e. within the drawing length, the cross-sectional dimensions of
the sheet decreases monotonically as it travels towards the cooling
stage (except in the swell region near the die exit). Under certain
processing conditions, several phenomena may be encountered
in this region, which hamper the required production in film qual-
ity and quantity. One of them is called neck-in causing an undesir-
able reduction in film width (see Fig. 1) and interrelated
phenomenon of edge-beads (also called dog-bone defect) making

the edge portions of the film substantially thicker than its central
part. Both of these steady state disruptions result in necessary
post-production film trimming since only the central part of the
film is uniform in thickness. From a practical viewpoint, it is of
great importance, therefore, to understand the underlying mecha-
nism of neck-in formation in order to minimize these unwanted
effects. In addition, outside of the steady state processing window
at high drawing rates, the transient disruption, called draw reso-
nance, causing periodical variations in dimensions of the produced
film as well as film brakeage itself may occur [3,4].

Polymer sheet or filament drawing has been studied extensively
over the past four decades both experimentally and theoretically
due to its great importance in the polymer processing industry. Ini-
tial efforts were made on a fiber spinning process for which the
flow kinematics are similar from a mathematical point of view if
considered as the one-dimensional flow case, for Newtonian and
Maxwell fluids by Gelder [5] and Fisher [6,7], respectively. Those
studies were aimed on investigating the draw resonance phe-
nomenon which was encountered for the first time by Christensen
[8] and Miller [9], and who postulated that the nature of this
phenomenon was not of viscoelastic nature because it could be
observed in Newtonian fluids as well. Extending the process kine-
matics into two or three dimensions, the processes differ and one
can observe phenomena in film casting that do not have a
counterpart in fiber spinning, i.e. neck-in and edge-beading. The
preliminary studies mentioned above provided the background
for extended studies on EFC. Initial attempts to simulate EFC
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operations were dedicated to investigation of process stability and
determination of draw resonance onset rather than to quantify the
extent of neck-in phenomenon. The very first study on modeling of
EFC process in this manner was carried out by Yeow [10] involving
a Newtonian fluid with simplified kinematics based on the
assumption of infinite film width under isothermal conditions. In

other words, the width of the film was deemed as a constant so
that the model did not account for either neck-in or edge-bead
defect. Aird and Yeow [11] continued on this equation background
of 1D model and extended analysis for power-law fluids, and then
Anturkar and Co [12] and Iyengar and Co [13,14] utilizing isother-
mal modified convected-Maxwell fluid and Giesekus constitutive

List of symbols

s extra stress tensor, Pa
r total stress tensor, Pa
W elastic potential, Pa
G linear Hookean elastic modulus (Relaxation modu-

lus), Pa
c, cii recoverable finger tensor, 1
c�1, c�1

ii inverse recoverable finger tensor, 1
I1;c first invariant of recoverable finger tensor, 1
I2;c second invariant of recoverable finger tensor, 1
b non-linear Leonov model parameter, 1
n non-linear Leonov model parameter, 1
ep irreversible rate of strain tensor, s�1

b dissipation term, s�1

d unit tensor (Kronecker delta), 1
D deformation rate tensor, s�1

k relaxation time, s
n non-linear Leonov model parameter, 1
m non-linear Leonov model parameter, 1
c
�

Jaumann (corotational) time derivative of the recov-
erable finger strain tensor, s�1

N1 first normal stress difference, Pa
N2 second normal stress difference, Pa
rxx total normal stress in the axial direction (machine

direction), Pa
ryy total normal stress in y-direction, Pa
rzz total normal stress in z-direction, Pa
sxx normal stress in the axial direction (machine direc-

tion), Pa
syy normal stress in y-direction (transverse direction), Pa
szz normal stress in z-direction (thickness direction), Pa
p isotropic pressure, Pa
cxx component of the recoverable finger tensor in

x-direction, 1
cyy component of the recoverable finger tensor in

y-direction, 1
czz component of the recoverable finger tensor in
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e half-thickness of the film at any x location, mm
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v velocity of the film in y-direction at any x location,

mm s�1
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aS shift factor, 1
A1;A2;a1;a2, u1;u2 fitting parameters of analytical model, 1
ns number of samples (points), 1
yi observed value, 1
ŷi predicted value, 1
Mw mass average molar mass, g mol�1

Mn number average molar mass, g mol�1

Mz Z average molar mass, g mol�1

MFR mass flow rate, kg h�1

Rh the hydrodynamic radius of a macromolecule, nm
PDI polydispersity index, 1
MFI mass flow index, g/10 min
q polymer density, g cm�3
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equations for linear and non-linear analysis in simulations of vis-
coelastic fluids. First isothermal trials towards necking phenomena
modeling were carried out by Sergent [15] and then by Cotto, Duffo
and Barq [16–18] for non-isothermal conditions.

Another milestone work has been set by Dobroth and Erwin
[19] who pointed out that the deformation flow in the drawing
length comprises of two related regions and the extent of
edge-beads and interrelated neck-in phenomenon is determined
by the interplay between them through an edge stress effect. While
the center of the film undergoes planar elongational deformation,
the edge sections are subjected to uniaxial elongational one (see
Fig. 2).

In the case of fiber spinning, however, one can observe uniaxial
elongational flow only. Some authors endeavoured to relate and
quantify the gauge of the observed necking in terms of rheological
parameters, such as shear, uniaxial and planar viscosity. Many
authors reported that the strain hardening in uniaxial elongational
viscosity may depress the extent of necking phenomena [20–23].
This idea was continued by Ito [24], who related the neck-in extent
to rheological parameters such as the ratio of planar viscosities in
axial and transverse directions, and derived an analytical equation
for the edge line of a molten film of Newtonian and Maxwell fluid.
Along the line of Dobroth and Erwin’s article [19], who as the first
recognized deformation type in the drawing area, Shiromoto [25–
27], recently, presented the idea that the extent of the necking
should not have been described by uniaxial elongational viscosity
only in addition to take-up length but as the ratio of planar and
uniaxial elongational viscosities reflecting the deformation type
in the central and edge portion of the film in the drawing section.
Aside from performing non-isothermal viscoelastic simulations,
they also proposed a theoretical model based on force balance
and deformation type of a film in order to predict necking behavior.

More recently, a 2D membrane model was presented by d’Hale-
wyu [28] and Debbaut [20] for Newtonian and viscoelastic fluids,
respectively. This frequently used model was capable of predicting
the dog-bone defect, i.e. development of edge-beads, under the sta-
tionary conditions. Silagy et al. [29] proceeded forward and
enriched the membrane model by a supplementary kinematic
hypothesis that was originally brought by Narayanaswamy [30]
in his paper on float glass stretching, and carried out an extended
isothermal study on the influence of processing conditions on film
geometry, and stability analysis of EFC for Newtonian and Maxwell
fluid using the UCM constitutive equation. Because of the assump-
tions used in flow kinematics, this model was able to cover film
width reduction and thus predict the neck-in phenomenon but
was still not able to predict edge-beading. This limitation was
removed in their succeeding work [31] where the 2D isothermal
membrane model combined with PTT constitutive equation was
developed and obtained steady and transient stability results com-
pared with its 1D predecessor. In the following years, the 1D ver-
sion of Sylagy’s membrane model was used in many studies and
considerable amount of work has been done on EFC under non-
isothermal conditions including crystallization effects by Lamberti
et al. [32–35], Lamberti and Titomanlio [34,36–38], and Lamberti
[39]. A three dimensional model for EFC simulation was further
developed by Sakaki et al. [40] and Zheng et al. [41] for isothermal
and non-isothermal steady Newtonian fluid, respectively.

The influence of macromolecular architecture on the extent of
necking phenomenon has been investigated by Ito et al. [24,42]
(effects of draw ratio and take-up length on necking for LDPE,
HDPE and mLLDPE) and Baird et al. [43,44] (effects of long chain
branching and molecular weight distribution on necking for LDPE,
mLLDPE and Ziegler-Natta catalyzed LLDPE). Recently, Pol et al.
[45,46] and Chikhalikar et al. [47] have published a series of arti-
cles in which they have performed experimental and theoretical
investigations of the effects of long chain branching and molecular
weight distribution on the necking phenomenon extent. For this
purpose, they utilized the 1D membrane model, originally pro-
posed by Silagy [29], the multi-mode eXtended Pom-Pom constitu-
tive equation and the multi-mode Rolie-Poly stretch constitutive
equation, respectively, for the long chain branched (LDPE, PP)
and the linear (HDPE, PP) polymers. Fixing the DR and TUL, they
found that the extent of necking is lesser for HDPE with a broader
molecular weight distribution than that for LLDPE with a narrower
molecular weight distribution and further that long chain
branched LDPE necks-into lower extent than linear HDPE or LLDPE.
In their latest work [48], they addressed the effects of the individ-
ual viscoelastic relaxation modes of a polymer melt on its behavior

Fig. 2. Visualization of planar and uniaxial extensional flows during the extrusion
film casting process.

Fig. 1. Neck-in phenomenon during the extrusion film casting process.
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in polymer melt extrusion film casting process using UCM and PTT
constitutive equations. They found that experimental data for
long-chain branched LDPE was described better by UCM model,
whereas PTT model provided better simulation results for the lin-
ear LLDPE experimental data.

Even though, the real EFC manufacturing process involves com-
plex kinematics and is considered as a 3D problem whose numer-
ical simulation can be very demanding, it has been proven by many
authors that the EFC 1D membrane model originally proposed by
Silagy [29], if used in combination with appropriate constitutive
equations, is capable of providing results that are in good agree-
ment with experiment data.

In the present work, a theoretical study of the neck-in phe-
nomenon under steady-state isothermal conditions is carried out
utilizing the 1D membrane model together with viscoelastic mod-
ified Leonov constitutive equations. The influence of uniaxial
extensional strain hardening, planar to uniaxial extensional viscos-
ity ratio and Deborah number is systematically studied and the
results are compared with corresponding experimental data taken
from the open literature.

2. Mathematical modeling

2.1. Modified Leonov model

This constitutive equation is based on heuristic thermodynamic
arguments resulting from the theory of rubber elasticity [49–54].
In the model, fading memory of the melts is determined through
an irreversible dissipation process driven by the dissipation term,
b. Mathematically, it is relating the stress and elastic strain stored
in the material as:

s ¼ 2 c
@W
@I1;c

� c�1 @W
@I2;c

� �
ð1Þ

where s is the stress, andW, the elastic potential, which depends on
the invariants I1,c and I2,c of the recoverable Finger tensor c,

W ¼ 3G
2ðnþ 1Þ ½1� b� I1;c

3

� �nþ1

� 1

" #
þ b

I2;c
3

� �nþ1

� 1

" #( )
ð2Þ

where G denotes linear Hookean elastic modulus, b and n are
numerical parameters. Leonov assumed that the dissipative process
acts to produce an irreversible rate of strain ep

ep ¼ b½c � I1;c
3

d� � b½c�1 � I2;c
3

d� ð3Þ

which spontaneously reduces the rate of elastic strain accumula-
tion. Here, d is the unit tensor and b stands for dissipation function
defined by Eq. (5). This elastic strain c is related to the deformation
rate tensor D as follows

c
� � c � D� D � c þ 2c � ep ¼ 0 ð4Þ

where c
�
is the Jaumann (corotational) time derivative of the recov-

erable Finger strain tensor. In this work, the Mooney potential (i.e.
n = 0 in Eq. (2)), and the dissipation function b proposed in [55] (see
Eq. (5)) have been employed.

bðI1;cÞ ¼ 1
4k

exp½�n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1;c � 3

q
� þ sinh½mðI1;c � 3Þ�

mðI1;c � 3Þ þ 1

� �
ð5Þ

Here, n and m are adjustable model parameters.

I1;c ¼ trðcÞ ð6Þ

trðcÞ ¼ cxx þ cyy þ czz ð7Þ

I2;c ¼ 1
2
f½trðcÞ�2 � trðc2Þg ð8Þ

I2;c ¼ c�1
xx þ c�1

yy þ c�1
zz ð9Þ

Differentiating Eq. (2) with respect to the first and second
invariant of the recoverable Finger tensor yields

@W
@I1;c

¼ 1
2
G

I1;c
3

� �n

ð1� bÞ ð10Þ

@W
@I2;c

¼ 1
2
Gb

I2;c
3

� �n

ð11Þ

Combination of Eq. (1) with Eqs. (10) and (11) leads to the fol-
lowing expression for the extra stress tensor.

s ¼ G c
I1;c
3

� �n

ð1� bÞ
� �

� c�1 b
I2;c
3

� �n� �� �
ð12Þ

2.2. Extrusion film casting model

In this work, the one-dimensional membrane model developed
by Silagy et al. [29] was used to model the isothermal extrusion
film casting process (see Fig. 3). The model essentially features
two hypotheses to facilitate the description of the stress and veloc-
ity field development in the film drawing. Firstly, the total stress in
the film thickness direction is assumed to be equal to zero because
this dimension is small compared to other dimensions and sec-
ondly, velocities in the width and thickness direction are allowed
to vary linearly with y and z position, respectively, for the given
x location, which represents a supplementary kinematic hypothe-
sis (formerly adopted in the work of Narayanaswamy [30] for the
modeling of glass manufacturing by the float process) in order to
reduce the dimensionality of the task. As a result, all model vari-
ables are x-direction dependent only and the model can be consid-
ered as one-dimensional although lateral film width and thickness
reduction can be modeled. Furthermore, the inertia, gravity, sur-
face tension and aerodynamic drag are neglected in this model
because they are usually much smaller in comparison with the
stresses generated in the viscoelastic polymer melt. Finally, the
process is treated here as an isothermal one, which can be justifi-
able for small enough drawing lengths and/or very high draw-
down speeds [56]. The detailed description of the utilized model
is provided below.

2.2.1. Velocity field
The Cartesian system axes are directed as follows (see Fig. 3):

in-film-plane axes x and y, where x points in the streamwise direc-
tion and y is perpendicular onto it, and z axis is normal to the film
xy plane with origin deployment in the cross-sectional center of
gravity at the die exit. The dimensions of the film are denoted as
follows: take up length is X, initial film half-width is L0, and initial
half-thickness is e0. The intensity of film drawing is expressed in
terms of draw ratio (DR) that relates the final tangential velocity
of the film at the chill roll, u(X), to the film velocity at the die exit,
u0. The quantities without a zero subscript denotes non-initial cor-
responding dimensions at any given x position. The influence of
extrudate swelling on the casting process is assumed to be negligi-
ble here. Using the symmetry of the problem and the kinematic
hypothesis, the complexity of the velocity field involved in the film
drawing is reduced, where each of the components is the function
of all spatial and time variables. In the resulting form, the velocity
field for steady solution is approximated as follows:
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u ¼ uðxÞ
v ¼ vðx; yÞ ¼ yf ðxÞ
w ¼ wðx; zÞ ¼ zgðxÞ

ð13Þ

where u, v andw are the velocity components in the machine, trans-
verse, and thickness direction, respectively. The deformation rate
tensor, which is based on Eq. (13), takes the following form:

D ¼
du
dx

1
2 y

df
dx

1
2 z

dg
dx

1
2 y

df
dx f ðxÞ 0

1
2 z

dg
dx 0 gðxÞ

2
664

3
775 ð14Þ

Since the polymer flow in EFC is mainly extensional and in an
effort to increase simplicity, the shear rate components can be
neglected in favour of elongational ones in Eq. (14), which leads
to the following final expression for the deformation rate tensor:

D ¼
du
dx 0 0
0 f ðxÞ 0
0 0 gðxÞ

2
64

3
75 ð15Þ

The film thickness is constant throughout the film width due to
the assumed velocity field, where the v and w velocity components
are dependent on x variable only and are allowed to vary linearly
over the film width and thickness, respectively, due to the applied
Narayanaswamy’s supplementary kinematic hypothesis as men-
tioned above.

2.2.2. Continuity equation
The continuity equation requires the conservation of mass at

any given streamwise position and with the incompressibility
hypothesis takes the following form.

d
dt

ðeLÞ þ d
dx

ðeLuÞ ¼ 0 ð16Þ

Since the transient solution of the equation is not an objective
of this study, the derivative with respect to time can be neglected.
For steady state solution, the derivative with respect to time is

d
dt

ðeLÞ ¼ 0 ð17Þ

and thus, the volumetric flow rate at the die exit position and at any
given streamwise position is given by Eqs. (18) and (19),
respectively.

e0L0u0 ¼ Q ð18Þ

eðxÞLðxÞuðxÞ ¼ Q ð19Þ
It is important to mention that the volumetric flow rate Q here

corresponds to 1/4th of the cross-section only due to the process
symmetry as show in [57].

2.2.3. Momentum conservation equation
Considering the membrane approximation for the thin film in

the presence of a constant drawing force, the stresses are constant
over the cross section of the film, which leads to the force balance
having the following form

d
x
ðrxxLeÞ ¼ dF

dx
¼ 0 ð20Þ

Neglecting gravity, inertia, aerodynamic friction and surface
tension forces, the drawing force becomes x-direction indepen-
dent, which is fully balanced by the stresses generated in the film.

F ¼ const ¼ rxxLe ð21Þ
In this equation, rxx stands for the first diagonal component of

the total stress tensor, r, which is defined via the extra stress ten-
sor, s, as follows

r ¼ �pdþ s ¼
�pþ sxx 0 0

0 �pþ syy 0
0 0 �pþ szz

2
64

3
75 ð22Þ

where p stands for the isotropic pressure, d is the unity tensor. As it
can be seen from Eq. (22), the diagonal components of the total
stress tensor are defined as

rxx ¼ �pþ sxx
ryy ¼ �pþ syy
rzz ¼ �pþ szz

ð23Þ

Fig. 3. Schematic of the extrusion film casting process kinematic.
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The membrane approximation requires zero value of the
thickness-wise component of total stress tensor, rzz ¼ 0, which
leads to

0 ¼ �pþ szz ð24Þ
i.e.

szz ¼ p ð25Þ
Substituting Eq. (25) back into expression for stress compo-

nents Eq. (23), the hydrostatic pressure term is eliminated, which
leads to the following final expression for the diagonal components
of the total stress tensor

rxx ¼ sxx � szz
ryy ¼ syy � szz
rzz ¼ 0

ð26Þ

After substitution of rxx, which is given by Eq. (26), into Eq. (21),
the final form of the force balance equation is obtained

ðsxx � szzÞLe ¼ F ð27Þ

2.2.4. The stress-free surface boundary condition
Assuming the surface tension and air drag are negligible, the net

force per unit surface at the film free surface is equal to zero:

r � n ¼ 0 ð28Þ

where the n is the unit vector normal to the free film surface. This
yields the following expression relating the stress state of the film
with the film half-width at given x position:

dL
dx

� �2

¼ ryy

rxx
ð29Þ

2.2.5. The kinematic free-surface boundary condition
The fluid is enclosed in the boundaries of the free surface, which

can be expressed as

u � n ¼ 0 ð30Þ
where u is the tangential velocity at the film-air interface. Combina-
tion of Eq. (30) with the equation of continuity leads to

uðxÞ dL
dx

� f ðxÞL ¼ 0 ð31Þ

uðxÞ de
dx

� gðxÞe ¼ 0 ð32Þ

where f ðxÞ and gðxÞ are components of the deformation rate tensor
(see Eq. (15)) in the width and thickness direction, respectively,
which can simply be expressed as

f ðxÞ ¼ uðxÞ
L

dL
dx

ð33Þ

gðxÞ ¼ uðxÞ
e

de
dx

ð34Þ

2.2.6. Dimensionless transformation
For the sake of simplicity and scaling purposes, the dimension-

less transformation has been introduced into the previously
derived equations (having similar form as in [29]). Corresponding
dimensionless quantities are denoted here with the overline sym-
bol. Dimensionless transformation for the extra stress tensor and
total stress tensor is defined here as

�sii ¼ siie0L0
F

ð35Þ

�rii ¼ riie0L0
F

ð36Þ

whereas the dimensionless spatial dimensions and streamwise
velocity component are

�x ¼ x
X

ð37Þ

�e ¼ e
e0

ð38Þ

�L ¼ L
L0

ð39Þ

�u ¼ u
u0

ð40Þ

Dimensionless numbers such as draw ratio, DR, Deborah num-
ber, De, aspect ratio, A and dimensionless force, E, are defined as
follows

DR ¼ uðXÞ
u0

ð41Þ

De ¼ ku0

X
ð42Þ

A ¼ X
L0

ð43Þ

1
E
¼ FX

Gke0L0u0
ð44Þ

Introducing the dimensionless transformation into the continu-
ity equation (Eq. (19)) and momentum conservation equation (Eq.
(27)) leads to the following dimensionless implicit forms

�e�L�u ¼ 1 ð45Þ

�sxx � �szzð Þ�L�e ¼ 1 ð46Þ
Substitution of Eq. (45) into Eq. (46) gives

�sxx � �szzð Þ � �u ¼ 0 ð47Þ
and differentiating Eqs. (45) and (47) with respect to x variable, one
can obtain

1
�e
d�e
d�x

þ 1
�L
d�L
d�x

þ 1
�u
d�u
d�x

¼ 0 ð48Þ

�sxx
d�x

� �szz
d�x

� d�u
d�x

¼ 0 ð49Þ

After rearrangement, the derivative of the dimensionless film
half-thickness and axial velocity with respect to x are finally
defined as

d�e
d�x

¼ � 1
�L
d�L
d�x

þ 1
�u
d�u
d�x

� �
�e ð50Þ

d�u
d�x

¼ d�sxx
d�x

� d�szz
d�x

ð51Þ

The dimensionless forms for f(x) and g(x) functions, which were
derived from the kinematic free-surface boundary condition and
appear in the deformation rate tensor, are the following

�f ¼ L0
u0

f ðxÞ ð52Þ

�g ¼ e0
u0

gðxÞ ð53Þ
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Finally, the dimensionless transformation for the x-direction
derivative of the film half-width (arising from Eqs. (26) and (29))
yields

d�L
d�x

¼ �A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�syy � �szz
�sxx � �szz

s
ð54Þ

2.3. Extrusion film casting model for the modified Leonov model

In order to combine the modified Leonov constitutive equation
and the extrusion film casting model equations, it is necessary to
derive the equation for particular stress development along the x
axis. The relationship between the dimensionless stress and the
recoverable strain, imposed from the modified Leonov model
(Eqs. (1) and (12)), can be described by the following formula
(for the case of the Mooney potential, i.e. when n = 0 and b– 0):

�sii ¼ E
De

cii � E
De

ciib� E
De

c�1
ii b ð55Þ

Differentiating this equation with respect to x leads to

d�sii
d�x

¼ E
De

dcii
d�x

� E
De

b
dcii
d�x

� E
De

b � 1
c2ii

dcii
d�x

� �
ð56Þ

where dcii
d�x stands for the x-direction derivative of the recoverable

strain tensor. This term is defined by Eq. (4) and for each component
of the recoverable strain tensor it takes the following form:

dcxx
d�x

¼ 2cxx
1
�u
d�u
d�x

� 2�b
�u
Zx ð57Þ

dcyy
d�x

¼ 2cyy
1
�L
d�L
d�x

� 2�b
�u
Zy ð58Þ

dczz
d�x

¼ 2czz
1
�e
d�e
d�x

� 2�b
�u
Zz ð59Þ

where �b, Zi and Xp are defined as

�bðI1;cÞ ¼ 1
4De

exp½�n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1;c � 3

q
� þ sinh½mðI1;c � 3Þ�

mðI1;c � 3Þ þ 1

� �
ð60Þ

Zi ¼ ciiðcii � c�1
ii þ XpÞ ð61Þ

Xp ¼ 1
3
ðc�1

xx þ c�1
yy þ c�1

zz � cxx � cyy � czzÞ ð62Þ

Combination of Eqs. (51) and (56) leads to the dimensionless
streamwise deformation rate, which takes the following form

d�u
d�x

¼
�b½bðZx � ZzÞ � Zx þ Zz� þ �bb 1

c2zz
Zz � 1

c2xx
Zx

	 

þ �u

�L
d�L
d�x czzð1� bÞþ b

czz

	 

bðcxx þ czzÞ � cxx � czz � b

cxx
czzþcxx

czz

	 

þ De�u

2E

ð63Þ

2.4. Boundary conditions

The complex and essential explicit model equations constituted
in the previous section, namely Eqs. (50), (54), (63), and (57)–(59)
has to be solved with the appropriate set of the boundary condi-
tions. Detailed description of the utilized boundary conditions is
provided below.

2.4.1. Upstream boundary conditions
Taking advantage of the dimensionless transformation, the ini-

tial half-width, half-thickness, and streamwise velocity are equal
to one.

�uð0Þ ¼ 1 ð64Þ

�eð0Þ ¼ 1 ð65Þ

�Lð0Þ ¼ 1 ð66Þ
Since a viscoelastic constitutive equation is involved in this study, it
is necessary to define initial boundary conditions for all three diag-
onal components of the extra stress tensor �sxxð0Þ, �syyð0Þ and �szzð0Þ
by using Eq. (55). To do that, diagonal components of the recover-
able strain tensor at the die exit must be determined as the first
by solving the following set of equations

E
De

½ðcxx � czzÞð1� bÞ þ bðc�1
zz � c�1

xx Þ� � 1 ¼ 0 ð67Þ

cxxcyyczz ¼ 1 ð68Þ

N2

N1
¼ E ½czz � cyy þ bðcyy þ c�1

yy � czz � c�1
zz Þ�

De�u
ð69Þ

Eq. (67) comes from the combination of Eqs. (47), (55) and (64)
whereas Eq. (68) represents the incompressibility condition for the
given flow situation. Eq. (69) represents normal stress difference
ratio at the die exit, which is defined as the ratio of the secondary
normal stress difference and primary normal stress difference

N2

N1
¼ �szzð0Þ � �syyð0Þ

�sxxð0Þ � �szzð0Þ ð70Þ

Note, that in this equation �sxxð0Þ � �szzð0Þ ¼ 1 as the result of Eqs.
(47) and (64). As it can clearly be seen from Eq. (69), the N2/N1 ratio,
which characterizes the polymer melt stress state at the die exit
region, has to be provided in order to calculate the initial boundary
conditions for the extra stress tensor.

2.4.2. Downstream boundary conditions
Downstream boundary condition, draw ratio, is prescribed as

the desired value that is satisfied by a priori unknown magnitude
of the drawing force.

�uðXÞ ¼ DR ð71Þ

2.5. Numerical scheme

The whole system of the first-order ordinary differential equa-
tions (namely Eqs. (50), (54), and (63) for film half-thickness,
half-width and velocity as well as Eqs. (57)–(59) for the compo-
nents of the recoverable elastic strain tensor cxx, cyy and czz) was
numerically solved by the 4th order Runge-Kutta algorithm with
adaptive step-size control. For the given take-up force value, it
was necessary to determine the components of the recoverable
elastic strain tensor in order to satisfy Eqs. (50), (54) and (63) along
with the other boundary conditions for the die exit region, that are
constant with the force, and thus do not require evaluation in every
iteration (Eqs. (64)–(66) and N2/N1 ratio). The value of the force
was guessed for the first iteration and then increased or decreased
throughout foregoing iterations in order to meet the DR boundary
condition (convergence) by Newton-Raphson method. It was pre-
ferred to develop the solver itself in the C++ programming lan-
guage, to avoid a black box effect, which could have appeared in
the case of using a built-in solver in any other commercial
mathematical-modeling software. The equation evaluation was
performed on the PC with the following hardware parameters:
CPU Intel Core 2 Quad Q9650 (3.00 GHz), RAM 8 GB DDR2, GPU
Sapphire Radeon HD 3870, SSD Crucial 256 GB. Typical computa-
tional time for one calculation was about 2 min. A schematic rep-
resentation of the utilized numerical scheme is provided in Fig. 4.
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3. Results and discussion

3.1. Film casting model validation

In order to validate the utilized film casting model, we have
used recent experimental and theoretical data provided in
[45,46,48] for very well characterized LDPE 170A polymer (pro-
duced by The Dow Chemical Company, Freeport, TX, USA) having
a flow activation energy 40 kJ/mol and molecular characteristics,
which are provided in Table 1.

In this work, the single-mode modified Leonov model was uti-
lized to simplify the calculation. The model parameters were iden-
tified by using deformation rate dependent ‘steady state’ uniaxial
extensional viscosity experimental data taken from Fig. 2b in
[46] (i.e. from the peaks appearing on the transient extensional vis-
cosity curves for corresponding extensional strain rates). Obtained
model parameters are provided in Table 2. Interestingly, the
measured data can be represented by the single-mode modified
Leonov model very well as shown in Fig. 5a).

Modeled processing conditions for the film casting process were
the same as described in [45,46], i.e. isothermal, die
width = 100 mm, gap size = 0.46 mm, melt exit velocity = 4.3 mm/
s, and distance between the die and roll 230 mm. As it has already
been mentioned, in the fully viscoelastic calculation based on the
modified Leonov model, it is necessary to define the stress state
at the end of the extrusion die, namely the ratio of the second nor-
mal stress difference, N2, and first normal stress difference, N1,
which is given by the flow history inside the flat extrusion die.
However, this rheological characteristic is not available for the
given LDPE 170A from [45,46,48] and thus typical �N2/N1 = 0.2
value was taken from the open literature [58] to define the stress
boundary condition at the die exit. Comparison between the film
casting model predictions based on the single-mode modified Leo-
nov model (this work), multi-mode XPP model and the corre-
sponding experimental data (both taken from [45,46]) is
provided in Fig. 5b–d and Fig. 6. In Fig. 5b–d, the basic dimension-
less variables such as film half-width, half-thickness and center-
line velocity are provided as the function of dimensionless distance

Fig. 4. Iteration scheme for the utilized viscoelastic film casting model.
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between the die (�x ¼ 0) and the chill roll (�x ¼ 1) for high draw ratio
(DR = 16) and Deborah number (De = 0.011) whereas Fig. 6 shows
the effect of draw ratio on dimensionless final film half-width for
low (0.011) and high (0.253) Deborah numbers. As it can be seen,
the behavior of both models is comparable and the agreement with
the experimental data is good for the given range of draw ratios
and Deborah numbers. Such a reasonably good agreement with
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Fig. 5. Comparison between experimental data for LDPE 170A (T = 150 �C) and given processing conditions (De = 0.011, DR = 16, X = 230 mm) taken from the open literature
[46] and corresponding model predictions considering that –N2/N1 = 0.2. (a) LDPE 170A extensional rheology, (b) film half-width profile between die and roll, (c) film half-
thickness profile between die and roll, and (d) velocity profile between die and roll.

Table 2
Modified Leonov model parameters for T = 150 �C; LDPE 170A.

k (s) G (Pa) n (1) m (1) b (1)

1.57 85,982.61 1.816 0.174 0.4

Table 1
Molecular characteristics for Dow LDPE 170A with density 0.924 g/cm3 and MFI 0.7 g/10 min (190 �C, 2.16 kg) [46].

Mn (g/mol) Mw (g/mol) Mz (g/mol) PDI (1) Newtonian viscosity
at 150 �C (Pa s)

Rh (nm) LCB
(per 10,000 C atoms)a

Branched � 6 C atoms
(per 10,000 C atoms)b

30,600 185,900 528,400 6.07 134,992.70 16.40 11 80

PDI – Polydispersity Index.
LCB – Long Chain Branching.

a Data acquired from HT-GPC (High-temperature Gel Permeation Chromatography).
b Data acquired from HT-NMR (High-temperature Nuclear Magnetic Resonance).
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the experimental data justifies to use of the given film casting
model with all applied assumptions together with even single-
mode Leonov model for detailed parametric study of the neck-in
phenomenon. In order to understand the undesired neck-in phe-
nomenon in more detail, the role of Deborah number and exten-
sional rheology was systematically investigated via a theoretical
parametric study, which is described in the next section.

3.2. Theoretical analysis of neck-in phenomenon

3.2.1. The role of extensional rheology
With the aim to understand the role of extensional behavior of

polymer melts on the neck-in phenomenon, 3 groups of virtual
materials were generated with high, middle and low level of uniax-
ial extensional strain hardening defined as

gE;U;max

3g0
ð72Þ

Here, gE;U;max represents the maximum value in the steady uniaxial
extensional viscosity and g0 is the Newtonian viscosity. In each

group, 5 virtual materials were generated having the same level
of uniaxial extensional strain hardening but different level of planar
extensional strain hardening defined as

gE;P;max

4g0
ð73Þ

where gE;P;max represents the maximum value in the steady planar
extensional viscosity. Modified Leonov model parameters for the
15 utilized virtual polymer melts (one of them, Melt3_Middle, has
identical parameters as the LDPE 170A melt described in Model val-
idation section) are provided in Table 3 whereas their extensional
rheology is provided in Fig. 7.

The title of each virtual melt contains information about the
level of uniaxial extensional strain hardening (Low, Middle, and
High) as well as about the level of planar extensional strain hard-
ening (1 – the lowest, 2, 3, 4, and 5 – the highest). For example,
the virtual samples entitled here as Melt1_High and Melt5_High
means that both samples have different planar extensional strain
hardening (i.e. the lowest in the first case and the highest in the
second case) whereas their uniaxial extensional strain hardening
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Fig. 6. Comparison between experimental data for LDPE 170A taken from the open literature [45] for different Deborah numbers (top –De = 0.253, X = 10 mm, bottom –
De = 0.011, X = 228 mm) and corresponding model predictions considering that �N2/N1 = 0.2. Left – dimensionless final film half-width vs. draw ratio, Right – dimensionless
final film half-thickness vs. draw ratio.
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is identical (high). Similarly, the virtual samples entitled as
Melt1_High and Melt1_Low means that both samples have identi-
cal (the lowest) planar extensional strain hardening but different
uniaxial extensional strain hardening (i.e. high and low in the first
and second case, respectively). Each group of virtual materials
(having the given level of uniaxial extensional strain hardening)
can be then characterized by steady-state planar to uniaxial exten-
sional viscosity ratio, gE;P

gE;U
, plotted as the function of extensional

strain rate, as visualized on the left side of Fig. 8.
In the next step, the dimensionless final film half-width as the

function of draw ratio was calculated for all 15 virtual polymer
melts by using the film casting model keeping the Deborah number
and �N2/N1 ratio the same, equal to 0.07 and 0.2, respectively.
Results are depicted on the right side of Fig. 8. As it can be seen,
if gE;P

gE;U
increases or gE;U;max

3g0
decreases, the intensity of neck-in phe-

nomenon as well as its sensitivity to draw ratio increases. It is also
visible that for the given conditions and virtual materials used,
there is always a critical draw ratio above which the dimensionless
final film width (i.e. also the neck-in) becomes constant and draw
ratio independent. Under such flow conditions, the applied exten-
sional strains are high enough to reach steady state values in uni-
axial and planar extensional viscosities. It is important to mention
that such high draw down ratios (DR > 20) are typically achieved in
industrial high speed productions [1,2]. In order to follow indus-
trial practice, our attention will focus on flow conditions at which
the maximum draw ratio independent neck-in occurs.

3.2.2. The role of Deborah number
In order to understand the role of Deborah number on the max-

imum attainable neck-in, its value was varied from 0.01 to 0.1 in
the film casting model for all 15 virtual polymer melts keeping
the �N2/N1 ratio the same, equal to 0.2. For each simulation case,
the draw ratio was adjusted high enough (typically equal to 40)
in order to reach maximum and draw ratio independent neck-in
value, NI. The maximum neck-in value was consequently normal-
ized by the take-up length (stretching distance) X as follows

NI� ¼ NI
X

ð74Þ

Calculated maximum neck-in value NI� as a function of the square
root of planar to uniaxial extensional viscosity ratio,
sqrtðgE;P=gE;UÞ, is provided in Fig. 9a–c for different Deborah num-
bers and uniaxial extensional strain hardening values. It is clear that
an increase in the Deborah number increases both, the neck-in as
well as its sensitivity to sqrtðgE;P=gE;UÞ.

3.2.3. Simple approximate and analytical solution for NI⁄

Closer analysis of numerical solutions depicted in Figs. 9a–c
reveals that NI� varies with sqrtðgE;P=gE;UÞ almost linearly for all
considered uniaxial extensional strain hardening levels. In order
to quantify all calculated data, let us consider the following linear
relationship between these two variables, i.e.:

NI� ¼ k

ffiffiffiffiffiffiffiffi
gE;P

gE;U

s
� 1

 !
þ Q ð75Þ

where k (the slope of the line) and Q (the NI⁄ intercept) are con-
stants for given De and gE;U;max

3g0
. In order to capture the effect of De

and gE;U;max
3g0

on both constants, let us assume the following relation-

ships for k and Q parameters (motivated by the well-known Avrami
equation):

k� ¼ kaS ¼ A1½1� expð�a1De
u1 Þ� ð76Þ

Q � ¼ QaS ¼ A2½1� expð�a2De
u2 Þ� ð77Þ

where A1, A2, a1, a2, u1, u2 represent constants whereas k⁄ and Q⁄

are the reduced slope and reduced NI⁄ intercept, respectively, and
aS is the shift factor defined as

aS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gE;U;max

3g0

10

s
ð78Þ

Eq. (75) was used to fit all numerical data provided in Fig. 9a–c in
order to identify k and Q parameters for given Deborah numbers
and gE;U;max

3g0
ratios. Both parameters were reduced by aS factor, plotted

as the function of the Deborah number and finally fitted by Eqs. (76)
and (77) to identify all model parameters, which are summarized in
Table 4. Note that the fitting error was evaluated for both equations
via the Root Mean Squared Error (RMSE) defined as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ns

Xns
j¼1

½yj � ŷj�2
vuut ð79Þ

where ns is the number of points whereas yj and ŷj represent
given and predicted points, respectively. Comparison between
Deborah number dependent k⁄ and Q⁄ and model fits is
provided in Fig. 9d and e. As it is shown, the suggested Eqs. (76)
and (77) have the capability to describe k⁄ and Q⁄ parameters rea-
sonably well.

If Eqs. (75)–(78) are combined together, the following expres-
sion for the normalized maximum neck-in is obtained

Table 3
Modified Leonov model parameters for the utilized virtual polymer melts at 150 �C.

Virtual material name k (s) G (Pa) n (1) m (1) b (1) gE;U;max
3g0

gE;P;max
4g0

Melt1_High 1.57 85,982.61 4.414 0.276 0.1 7.1 6.2
Melt2_High 1.57 85,982.61 4.042 0.208 0.3 7.1 6.6
Melt3_High 1.57 85,982.61 3.816 0.174 0.4 7.1 6.8
Melt4_High 1.57 85,982.61 3.54 0.14 0.5 7.1 7.1
Melt5_High 1.57 85,982.61 2.806 0.072 0.7 7.1 7.9

Melt1_Middle 1.57 85,982.61 2.014 0.276 0.1 3.4 2.9
Melt2_Middle 1.57 85,982.61 1.882 0.208 0.3 3.4 3.1
Melt3_Middle 1.57 85,982.61 1.816 0.174 0.4 3.4 3.2
Melt4_Middle 1.57 85,982.61 1.75 0.14 0.5 3.4 3.4
Melt5_Middle 1.57 85,982.61 1.53 0.072 0.7 3.4 4.2

Melt1_Low 1.57 85,982.61 0.338 0.276 0.1 1.3 1.10
Melt2_Low 1.57 85,982.61 0.38 0.208 0.3 1.3 1.17
Melt3_Low 1.57 85,982.61 0.4 0.174 0.4 1.3 1.22
Melt4_Low 1.57 85,982.61 0.418 0.14 0.5 1.3 1.29
Melt5_Low 1.57 85,982.61 0.426 0.072 0.7 1.3 1.53
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Fig. 7. Uniaxial and planar extensional viscosities of different virtual polymer melts utilized in this work having high (top), medium (middle) and low (bottom) level of
extensional strain hardening at T = 150 �C.
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Fig. 9. The effect of Deborah number and square root of planar to uniaxial extensional viscosity ratio, sqrt(gE,P/gE,U), on the normalized neck-in for high (a) medium (b) and
low (c) level of extensional strain hardening polymer melts considering that �N2/N1 = 0.2. Fig. 9d and 9e shows Deborah number dependent reduced slope k⁄ and the reduced
NI⁄ intercept Q⁄ (both calculated from k and Q in Eq. (75)), respectively, in comparison with the model fitting lines, which are given by Eqs. (76) and (77).
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NI� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
gE;U;max
3g0

10
q

(
A1½1� expð�a1De

u1 Þ�
ffiffiffiffiffiffiffiffi
gE;P

gE;U

s
� 1

 !

þ A2½1� expð�a2De
u2 Þ�

)
ð80Þ

This equation represents the final form of the simple analytical
expression for the normalized and draw ratio independent neck-
in value, which approximates the true numerical film casting model
solution for the chosen range of Deborah numbers, gE;U;max

3g0
and gE;P

gE;U

ratios. Comparison between the true numerical film casting model
predictions and approximate solution (given by Eq. (80)) for NI�

as a function of sqrtðgE;P=gE;UÞ, De and gE;U;max
3g0

is provided in Fig. 10.

Based on this figure, it can be stated that the simple approximate
solution model (Eq. (80)) is capable of representing NI� predictions
of the utilized 1D viscoelastic membrane model predictions very
well.

3.2.4. Behaviour of simple approximate solution for NI⁄ at high
Deborah numbers

If the Deborah number in Eq. (80) becomes high enough, the
expression for NI⁄ is simplified to

lim
De!1

NI� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
gE;U;max
3g0

10
q A1

ffiffiffiffiffiffiffiffi
gE;P

gE;U

s
� 1

 !
þ A2

" #
ð81Þ

As indicated from Table 4, A1 and A2 constants are very similar. This
suggests that both constants could be considered to be the same.
This can be justified by the very small increase in RMSE (from
0.00726 to 0.01506) when this assumption is applied to identify
corresponding a2 and u2 parameters via Eq. (77). Thus, considering
that A2 = A1 = 0.553, Eq. (81) simplifies to

lim
De!1

NI� ¼ 0:553ffiffiffiffiffiffiffiffiffiffiffiffi
gE;U;max
3g0

10
q

ffiffiffiffiffiffiffiffi
gE;P

gE;U

s
ð82Þ

Based on Eq. (82), it can be concluded that the maximum attain-
able NI⁄, which is given by the approximate solution at very high

Deborah numbers, is a linear function of
ffiffiffiffiffiffi
gE;P
gE;U

q
with a slope of

0:553ffiffiffiffiffiffiffiffiffiffiffi
gE;U;max

3g0
10
q .

3.3. Simple approximate solution for NI⁄ vs. experimental data

In this part, the validity of the simple approximate solution for
NI⁄, which is given by Eq. (80) and parameters provided in Table 4,
is tested for the Dow LDPE 170A sample (see Table 1) as well as for
three additional PE samples taken from [26], whose basic charac-
teristics are provided in Table 5. Normalized maximum neck-in,
NI⁄, together with the corresponding extrusion film casting pro-
cessing parameters for each polymer sample are taken from
[26,45] and they are summarized in Table 6.

In the first step, deformation rate dependent uniaxial exten-
sional viscosity data were successfully fitted for each polymer melt

Table 4
Parameters for Eqs. (76) and (77) defining k and Q values.

f(De) j Aj aj uj RMSE

Reduced slope 1 0.553 2,287.854 2.323 0.0255
Reduced NI⁄ intercept 2 0.512 66.712 1.087 0.00726
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Fig. 10. The effect of Deborah number on the normalized neck-in vs. planar to
uniaxial extensional viscosity ratio for virtual polymer melts having high (top),
medium (middle) and low (bottom) level of extensional strain hardening. Here,
symbols and lines represent utilized viscoelastic 1D membrane model and simple
approximate solution model (Eq. (80)) predictions, respectively.
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Table 5
Basic characteristics for PE-A, PE-B and PE-C samples [26].

Polymer sample MFI (g/10 min) Melt tension (cN) Mw (kg/mol) Mw/Mn (1) Newtonian viscosity at 130 �C (Pa s) Polymerization process

PE-A 6.7 2.1 163 9.1 16,220 Autoclave
PE-B 4.1 3.3 102 6.6 37,720 Tubular
PE-C 4.3 1.9 85 6.0 36,033 Tubular

Flow activation energy, Ea, for all three samples is 49.887 kJ/mol. Note, that Ea was calculated here as Ea = aR, where a is Arrhenius law parameter equal to 6,000 K provided in
[26] and R is the universal gas constant equal to 8.3144598 J/K/mol.

Table 6
Extrusion film casting processing parameters for all considered polymer samples taken from the open literature.

Polymer sample Die width (mm) Die gap (mm) Air gap (mm) Temperature (�C) Die exit velocity (mm/s) Draw ratio (1) NI⁄ (1) Ref.

LDPE 170A 100 0.46 228 190 4.3 17.1 0.1537 [45]
PE-A 600 0.80 160 320 46.6a 42.91b 0.2466 [26]
PE-B 600 0.80 190 320 46.6a 42.91b 0.3275 [26]
PE-C 600 0.80 220 320 46.6a 42.91b 0.5159 [26]

a Die exit velocity was determined based on the die width (L0), die gap (e0), melt density (q) and mass flow rate (MFR) as u0 = MFR/(qL0e0), where MFR = 60 kg/h and melt
density q = 745 kg/m3 [26].

b Draw ratio was determined from die exit velocity and take-up velocity as DR = u/u0. Take-up velocity is provided in [26] as u = 120 m/min.

10-4 10-3 10-2 10-1 100 101 102 103

Extensional Strain Rate (1/s)

103

104

105

106

PE-A Experimental Data
Modified Leonov Model

10-4 10-3 10-2 10-1 100 101 102 103

Extensional Strain Rate (1/s)

103

104

105

106

PE-B Experimental Data
Modified Leonov Model

10-4 10-3 10-2 10-1 100 101 102 103

Extensional Strain Rate (1/s)

103

104

105

106

PE-C Experimental Data
Modified Leonov Model

(c)

(a) (b)

Fig. 11. Comparison between experimentally determined deformation rate dependent uniaxial extensional viscosity data for different polymer samples at 130 �C taken from
[26] and single mode modified Leonov model predictions. (a) PE-A, (b) PE-B, and (c) PE-C.
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at given temperature by the single mode modified Leonov model,
as it can be seen in Fig. 11. Model parameters for PE-A, PE-B and
PE-C samples are provided in Table 7 for 130 �C. Note, that the Leo-
nov model parameters for the Dow LDPE 170A sample have already
been identified in the ‘Film Casting Model Validation’ section (see
Fig. 5a) and they are provided in Table 2.

In the second step, Leonov model relaxation times, which are
provided in Tables 2 and 7 for given polymer samples, were shifted
to the particular processing temperature by using the Arrhenius
shift factor and the flow activation energy, i.e. from 150 �C to
190 �C for LDPE 170A and from 130 �C to 320 �C for PE-A, PE-B
and PE-C samples. This allows calculation of Deborah number
according to Eq. (42) via shifted Leonov model relaxation time
and process parameters u0 (die exit velocity) and X (air gap) pro-
vided in Table 6. In order to evaluate the average value of planar
to uniaxial extensional viscosity ratio, gE;PgE;U

, by using modified Leo-

nov model, one needs to determine the mean value of deformation
rate in the machine direction, du/dx. This variable was estimated

here as the ratio of velocity difference between the die and roll
(u–u0) and stretching distance X, which can be justifiable for linear
velocity profiles typically occurring for LDPE polymer melts
[45,46,48]. Uniaxial extensional strain hardening, gE;U;max

3g0
, is simply

given by the modified Leonov model for given material and pro-
cessing temperature. All estimated parameters, which are needed
to calculate the maximum normalized neck-in value, NI⁄, via the
approximate model (Eq. (80)), are summarized in Table 8 for the
given materials and processing conditions.

Comparison between the measured NI⁄ and approximate model
predictions, utilizing parameters summarized in Table 8, is pro-
vided in Fig. 12. As it can be seen, the simple approximate model
can predict neck-in value NI⁄ for the considered LDPE polymer
melts and Deborah numbers very well. Eq. (80) can thus be consid-
ered as a useful tool for optimization of process conditions and
polymer melt rheology to minimize neck-in phenomena during
thin flat film production under industrial processing conditions.

It is important to mention that utilization of Eq. (80) requires
experimental determination of the planar-to-uniaxial extensional
viscosity ratio, which is one of the most challenging rheological
tasks because generation and control of the extensional flow is dif-
ficult. Just recently, it has been shown that planar and uniaxial
extensional viscosity can be measured in a wide temperature and
deformation rate range by using a standard twin bore capillary
rheometer, with novel rectangular and circular orifice (zero-
length) dies and the Cogswell model [59].

4. Conclusions

In this work, viscoelastic, isothermal extrusion film casting
modeling utilizing a 1D membrane model and a single-mode mod-
ified Leonov model was performed in order to understand the role
of uniaxial extensional strain hardening, planar-to-uniaxial exten-
sional viscosity ratio and Deborah number on the neck-in phe-
nomenon. For model validation purposes, basic dimensionless
variables measured in [45,46,48] for LDPE polymer melt such as
film half-width, half-thickness and center-line velocity as the func-
tion of stretching distance, DR and Deborah numbers were used. It
was found that the film casting modeling by using multi-mode XPP
model and modified Leonov model is comparable for the given
LDPE polymer and processing conditions even though, surprisingly,
a single-mode version of the Leonov model was used. The conse-
quent parametric study revealed that firstly, if planar to uniaxial
extensional viscosity ratio, gE;P

gE;U
, decreases or uniaxial extensional

strain hardening increases, gE;U;max
3g0

, intensity of neck-in phenomenon

as well as its sensitivity to draw ratio decreases and secondly, an
increase in the Deborah number increases both, the neck-in as well

Table 7
Modified Leonov model parameters for PE-A, PE-B and PE-C polymer samples at 130 �C.

Polymer sample k (s) G (Pa) n (1) m (1) b (1)

PE-A 9.5 1,707.37 0.41 0.0015 0.4
PE-B 15 2,514.67 0.29 0.0034 0.4
PE-C 30 1,201.10 0.09 0.0013 0.5

Table 8
Analytical model parameters for all considered polymer materials for the given processing parameters.

Polymer sample k (s) De (1) Mean du/dx (1/s) gE;P
gE;U

gE;U;max
3g0

LDPE 170A 0.588 0.011 0.300 1.280 3.393
PE-A 0.079 0.019 10.281 0.833 9.299
PE-B 0.125 0.026 8.879 1.102 4.198
PE-C 0.250 0.061 10.281 1.293 2.047
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Fig. 12. Normalized maximum and draw ratio independent neck-in value, NI⁄, as
the function of Deborah number for LDPE 170A, PE-A, PE-B and PE-C polymer
samples for the processing conditions summarized in Table 8. Experimental data
(taken from [45,26]) are represented here by the open symbols whereas the
predictions of the proposed analytical model, Eq. (80), are given by the filled
symbols.
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as its sensitivity to gE;P
gE;U

. Obtained numerical solutions were success-

fully approximated by a simple dimensionless analytical equation
relating maximum attainable neck-in value with gE;U;max

3g0
, gE;P
gE;U

and

Deborah number. The validity of the suggested equation was
tested by using experimental data taken from the open literature
[26,45,46] for four different polyethylene melts, for which
0:011 6 De 6 0:061, 0:833 6 gE;P

gE;U
6 1:293 and 2:047 6 gE;U;max

3g0
6

9:299. It was found that the proposed equation can describe for
the given polymer melts and processing conditions the experimen-
tal data very well. Thus, it is believed that this simple model can be
used for material, die design and process conditions optimization
in order to minimize unwanted neck-in phenomenon in cast film
production.
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A B S T R A C T

In this work, effect of the second to first normal stress difference ratio at the die exit, −N2/N1, uniaxial ex-
tensional strain hardening, ηE U max

η
, ,
3 0

, planar-to-uniaxial extensional viscosity ratio, ηE P
ηE U
,
,
, and Deborah number, De,

has been investigated via viscoelastic isothermal modeling utilizing 1D membrane model and a single-mode
modified Leonov model as the constitutive equation. Based on the performed parametric study, it was found that
there exists a threshold value for De and ηE U max

η
, ,
3 0

, above which, the neck-in starts to be strongly dependent on

−N2/N1. It was found that such critical De decreases if −N2/N1,
ηE U max

η
, ,
3 0

increases and/or
ηE P
ηE U
,
,

decreases.

Numerical solutions of the utilized model were successfully approximated by a dimensionless analytical equation
relating the normalized maximum attainable neck-in with ηE U max

η
, ,
3 0

, ηE P
ηE U
,
,
, −N2/N1 and De. Suggested equation

was tested by using literature experimental data considering that −N2/N1 depends on die exit shear rate,
temperature and utilized constitutive model parameters for given polymer melt. It was found that approximate
model predictions are in a very good agreement with the corresponding experimental data for low as well as very
high Deborah numbers, at which neck-in strongly depends on −N2/N1. It is believed that the obtained
knowledge together with the suggested simple model can be used for optimization of the extrusion die design
(influencing flow history and thus die exit stress state), molecular architecture of polymer melts and processing
conditions to suppress neck-in phenomenon in production of very thin polymeric flat films.

1. Introduction

The extrusion film casting technology is an industrially important
process that has a firm position on the market due to its capability to
produce high quality thin polymeric films at high production rates.
Those films can be used in different applications such as wrapping
materials, barriers reducing permeability for air and vapor, or as a se-
parator membrane for rechargeable batteries in mobile devices and
electric vehicles.

In this technology, the polymer melt is extruded through a slit die to
form a thick sheet that is subsequently intensively stretched in the axial
direction, hauled off and quenched by a rotating drum stabilizing the
film dimensions. [1,2] (Fig. 1). Except of an initial swelling, the
thickness of the film decreases monotonically due to high Draw ratio
(the haul off speed divided by the die exit velocity). In such a case, film
width is gradually reduced toward the stretching/cooling roll, which is
called neck-in phenomenon.

Aside from that, the interrelated defect of edge-beads promotes the
lateral portion of the film to being substantially thicker than its central
part (Fig. 2). While the first phenomenon affects a production rate, the
second calls for a post-production trimming since solely central portion
of the film is uniform in thickness. Understanding the relationship be-
tween material parameters and processing conditions including the
flow in the die might be the way to effectively control the extent of
neck-in and edge-beading as even a small reduction of these defects
may bring increased efficiency considering high production rates in this
manufacturing process.

Scientific investigation of the extrusion film casting process has
been addressed in many works dealing with both a steady and transient
approaches to the problem. Initial studies were dedicated to an in-
vestigation of the hydrodynamic instability observed during the pro-
duction of fibers called draw resonance [3–5] and then expanded for
films in [6] where the numerical modeling for film casting using the
one-dimensional isothermal model of Newtonian fluid was utilized for
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the first time. Other authors followed and employed different con-
stitutive equations for power-law [7], and viscoelastic fluids using
modified convected-Maxwell [8] and modified Giesekus model [9,10].
Due to the assumed kinematics for the free surface flow at the drawing
zone, the model could not capture edge-bead defect and contraction in
film width.

First efforts to overcome this limitation and to accommodate ability
to predict neck-in were made for a Newtonian fluid at isothermal [11]

and non-isothermal conditions [12–14]. Lately, improved isothermal
two-dimensional membrane model having the capability to capture the
development of edge-beads under the stationary conditions was re-
leased; isothermal Newtonian [15] and viscoelastic Maxwell and Gie-
sekus fluid [16], and models that take thermal effects into account for
Newtonian [17] and viscoelastic Larson fluid [18]. In the meantime,
simplified one-dimensional membrane approach based on a supple-
mentary kinematic hypothesis, that originally brought for a float glass

List of symbols

A aspect ratio (1)
A A,1 2 fitting parameters of analytical model (1)
b dissipation term (s−1)
b dimensionless dissipation term (1)
c recoverable Finger tensor (1)
−c 1 inverse recoverable Finger tensor (1)

c
0

jaumann (corotational) time derivative of the recoverable
Finger strain tensor (s−1)

cxx normal component of the recoverable Finger tensor in
axial x-direction (1)

cyy normal component of the recoverable Finger tensor in
transverse y-direction (1)

czz normal component of the recoverable Finger tensor in
thickness z-direction (1)

D deformation rate tensor (s−1)
De Deborah number (1)
DR draw ratio (1)
ep irreversible rate of strain tensor (s−1)
E dimensionless take-up force (1)
Ea flow activation energy (J·mol−1)
e half-thickness of the film at any x location (mm)
e0 die half-gap (half-thickness of the film at the die exit)

(mm)
e dimensionless half-thickness of the film at any x location

(1)
F take-up force (stretching force) (N)
f rate of deformation in transverse y-direction (s−1)
G linear Hookean elastic modulus (Pa)
g rate of deformation in thickness z-direction (s−1)
i index i, noting the spatial direction (1)
I1, c first invariant of recoverable Finger tensor (1)
I2, c second invariant of recoverable Finger tensor (1)
j index j (1)
L half-width of the film at any x location (mm)
L0 half-width of the die (half-width of the film at the die exit)

(mm)
L dimensionless half-width of the film at any x location (1)
MFI melt flow index (g/10 min)
MFR mass flow rate (kg·h−1)
Mn number average molar mass (g·mol−1)
Mw mass average molar mass (g·mol−1)
NI maximum attainable neck-in (mm)
NI* normalized maximum attainable neck-in (1)
N1 first normal stress difference (Pa)
N2 second normal stress difference (Pa)
n non-linear Leonov model parameter (1)
n0 non-Newtonian index (1)
ns number of sample points (1)
Q volumetric flow rate (m3·s−1)
R gas constant (J·K−1·mol−1)
T melt temperature at the die (°C)
T0 reference temperature in the Arrhenius law (°C)
u axial velocity component of the film at any x location

(mm·s−1)
u(X) chill roll speed (mm·s−1)
u0 axial velocity component at the die exit (mm·s−1)
u dimensionless axial velocity component of the film at any

x location (1)
v transverse velocity component of the film at any x location

(mm·s−1)
W elastic potential (Pa)
w thickness velocity component of the film at any x location

(mm·s−1)
X take-up length (stretching distance, air gap) (mm)
x position in axial x-direction (mm)
x dimensionless position in axial x-direction (1)
yi observed value (1)

̂yi predicted value (1)
x, y, z spatial coordinates in axial, transverse and thickness di-

rection, respectively (1)
Z Z Z, ,x y z substitution variables (1)

( )du
dx M

mean value of extensional strain rate in the air gap (s−1)

, ,dc
dx

dc
dx

dc
dx

xx yy zz derivative of Finger tensor components with respect to
dimensionless x position (1)

, ,du
dx

dL
dx

de
dx derivative of dimensionless axial, transverse and thickness

velocity component with respect to dimensionless x po-
sition (1)

Greek symbols

α Arrhenius law parameter (K)
α α,1 2 fitting parameters of analytical model (1)
β non-linear Leonov model parameter (1)
γ̇COR corrected shear rate by Rabinowitsch correction for the

rectangle channel (s−1)
δ unit tensor (Kronecker delta) (1)
δ δ shift function (1)
η0 Newtonian viscosity (Pa·s)
ηE P, steady planar extensional viscosity (Pa·s)
ηE P, , max maximal steady planar extensional viscosity (Pa·s)
ηE U, steady uniaxial extensional viscosity (Pa·s)
ηE U, , max maximal steady uniaxial extensional viscosity (Pa·s)
θ fitting parameters of analytical model (1)
λ relaxation time (s)
ν non-linear Leonov model parameter (1)
ξ non-linear Leonov model parameter (1)
ρ polymer density (g·cm−3)
τ extra stress tensor (Pa)
τxx normal stress in axial x-direction (Pa)
τyy normal stress in transverse y-direction (Pa)
τzz normal stress in thickness z-direction (Pa)
τxx dimensionless normal stress in axial x-direction (1)
τyy dimensionless normal stress in transverse y-direction (1)
τzz dimensionless normal stress in thickness z-direction (1)
φ1, φ2 fitting parameters of analytical model (1)
ψ ψ ψ ψ, , ,1 2 3 4 fitting parameters of analytical model (1)
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stretching [19], was proposed [20] and an extended isothermal study
on the influence of processing conditions on the film geometry for
casting of Newtonian and Maxwell fluids was carried out. Owing to the
assumed flow kinematics, this model could cover a film width reduction
but was not able to predict edge-beading. This restriction was removed
in the succeeding work [21]. A cutting-edge three-dimensional model
for extrusion film casting simulation was further established for a
steady Newtonian isothermal [22] and non-isothermal [23] fluid.

A specific attention was given at certain aspects of the process. The
effect of thermal conditions including crystallization [24–31] as well as

influence of macromolecular architecture on the extent of neck-in
[32–36] was put under research abundantly. More recently, a sequence
of articles based on the one-dimensional membrane model [20] have
been published dealing with both experimental and theoretical in-
vestigation of the effects of long chain branching and molecular weight
distribution on the neck-in [37–39] (XPP and RP-s), and discussing the
role of individual viscoelastic relaxation modes of a polymer melt [40]
(UCM and PTT). In the latest works of this series [41,42], the evaluation
of a draw resonance onset with model based on PTT constitutive
equation and neck-in degree simulation using two-dimensional model

Fig. 1. Schematic visualization of the extrusion film casting process.

Fig. 2. Neck-in and edge-beading phenomena during the extrusion film casing process.
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with UCM constitutive equation [33] was addressed, respectively.
The key findings with respect to formation of edge-beads and neck-

in were postulated in [43], where the authors pointed out that the
deformation flow in the drawing zone comprises of two related regions
and the extent of these phenomena is determined by the interplay be-
tween them through an edge stress effect, as illustrated in Fig. 3. Planar
extensional deformation is experienced in a central region of the film
and uniaxial extensional one in lateral parts. This led to that some
authors have chosen an approach relating the level of the observed
necking in terms of rheological parameters and reported that a degree
of neck-in phenomenon may be depressed by a strain hardening in
uniaxial extensional viscosity [16,18,44,45]. This conception was
slightly more developed in the succeeding studies where the neck-in
extent was connected with the ratio of planar viscosities in axial and
transverse directions [33], and recently, with the ratio of planar to
uniaxial extensional viscosity [46–48] reflecting the flow kinematics in
a drawing zone according to [43].

In order to resolve the system of model equations proposed in above
mentioned studies, it is necessary to have fully satisfied boundary
conditions. This is problematic for the cases, in which viscoelastic
constitutive equations are used because an additional boundary stress
condition at the die exit must be specified. Its value should be de-
termined by both, a polymer flow in the upstream and downstream
region (i.e. depending on an in-die complex flow) and a extensional
flow in the drawing zone [49]. Among the various authors, one can find
following strategies on how to deal with this problem. First, all stress
components are set to zero considering entire stress relaxation due to
the die swell phenomenon [16,17,50,51]. Second, at least one stress
component is given by a Newtonian solution for downstream side in-
dependently on the utilized type of constitutive equation
[18,20,21,39,41,52,53]. Third, two extra stress components are ad-
justed manually without more reasoning [37,38,40]. Fourth, the die
exit stress state is given by axial upstream extra stress component [8],
thickness to axial extra stress component ratio for upstream/down-
stream side [9,54] or by second to first normal stress difference ratio,
−N2/N1, calculated from upstream side [55] by using viscoelastic
constitutive equation. It has been found that if Deborah number is low
(0.00161 [49]; 0.07 [20,21]; 0.1 [9,56]), the choice of the initial stress
conditions at the die have only a little influence on the steady-state
calculations. However, at high Deborah numbers (De = 0.124 [8]) it
seems that the die exit stress state, which can be influenced for example
by extrusion die design [57] starts to have a significant impact on the
neck-in phenomenon.

In this article, as a part of circumstantial set of our studies on the
free-surface flow instabilities [58–60], the effect of die exit stress state,
extensional rheology and Deborah number on the neck-in phenomenon
is systematically investigated via viscoelastic isothermal modeling
(utilizing 1D membrane model coupled with a single-mode modified
Leonov model) and obtained results are compared with suitable lit-
erature experimental data.

2. Mathematical modeling

2.1. Modified Leonov model

The utilized modified Leonov model is based on heuristic thermo-
dynamic arguments resulting from the theory of rubber elasticity
[61–66]. In this constitutive equation, a fading memory of the melt is
determined through an irreversible dissipation process driven by the
dissipation term, b. From mathematical viewpoint, it is relating the
stress and elastic strain stored in the material as:

⎜ ⎟= ⎛
⎝

∂
∂ − ∂

∂
⎞
⎠

−τ c W
I

c W
I

2
c c1,

1

2, (1)

where τ is the stress, andW, the elastic potential, which depends on the
invariants I1,c and I2,c of the recoverable Finger tensor c,
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where G denotes linear Hookean elastic modulus, β and n are numerical
parameters. Leonov assumed that the dissipative process acts to pro-
duce an irreversible rate of strain ep

= ⎡
⎣ − ⎤

⎦ − ⎡
⎣ − ⎤

⎦
−e b c

I
δ b c

I
δ

3 3p
c c1, 1 2,

(3)

which spontaneously reduces the rate of elastic strain accumulation.
Here, δ is the unit tensor and b stands for dissipation function defined
by Eq. (5). This elastic strain c is related to the deformation rate tensor
D as follows

− − + =∘
c c D D c c e· · 2 · 0p (4)

where
∘
c is the Jaumann (corotational) time derivative of the recover-

able Finger strain tensor. In this work, the Mooney potential (i.e. n = 0
in Eq. (2)), and the dissipation function b proposed in [67] (see Eq. (5))
have been employed.

Fig. 3. Visualization of the flow type distribution in the post-die area during the extrusion film casting process.
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Here, ξ and ν are adjustable model parameters.

2.2. Extrusion film casting model

In this study, one-dimensional membrane model [20] was used to
simulate the drawing process of a molten film in the post extrusion die
area. The model is capable to predict film width shrinkage despite its
dimensionality due to the applied flow kinematics assumptions [19]
allowing principal velocity variation along the axial direction (Fig. 1) as
follows

=
= =
= =

u u x
v v x y yf x
w w x z zg x

( )
( , ) ( )
( , ) ( ) (6)

Here u, v and w stands for the velocities in axial, transversal and
thickness direction, respectively. The membrane model comprises of
equations for continuity and momentum conservation that are si-
multaneously solved with viscoelastic single-mode modified Leonov
model as the constitutive equation. The main model equations are
summarized below in dimensionless form utilizing dimensionless
quantities provided in Table 1 (having a similar form as in [20] to keep
consistency with the open literature).

In this table, τii is the ii component of the extra stress tensor; F and E,
drawing and dimensionless drawing force exerted onto film; DR, draw
ratio; De, Deborah number; λ, relaxation time; G, elastic modulus; A,
aspect ratio; X and x, drawing distance and actual axial position and L,
e, u, are half-width, half-thickness and axial velocity of the film. The
zero subscript and overbar sign denotes initial and dimensionless cor-
responding quantity, respectively.

Mass conservation equation is given by the following equation

=eLu 1 (7)

Considering the membrane approximation for a thin film in the
presence of a constant drawing force, the momentum conservation
equation yields

− − =τ τ u( ) 0xx zz (8)

The kinematic free-surface and stress-free surface boundary condi-
tion allows determination of unknown functions appearing in Eq. (6).
(i.e. f(x) and g(x)) and the film width-stress relationship at given di-
mensionless axial position, x , Eq. (9), respectively.

= − −
−

dL
dx

A
τ τ
τ τ
yy zz

xx zz (9)

Differentiating Eqs. (7) and (8) with respect to x variable and after
algebraic rearrangement, the derivative of the dimensionless film half-
thickness with respect to x leads to

⎜ ⎟= −⎛⎝ + ⎞
⎠

de
dx L
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dx u

du
dx

e1 1
(10)

Utilization of Mooney potential in the modified Leonov model
constitutive equation (i.e. when n = 0 and β ≠ 0 in Eq. (2)), the re-
lationship between the dimensionless stress and recoverable strain
takes the following form

= − − −τ E
De

c E
De

c β E
De

c βii ii ii ii
1

(11)

In combination of the membrane model and constitutive equation,
the derivative of diagonal components of the recoverable strain tensor,
cii, with respect to x are given in form

= −dc
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c
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where the dimensionless dissipation function, b , and Zi are defined as
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Combination of Eqs. (7), (8) and (11) leads to the dimensionless
streamwise deformation rate, which takes the following form
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Eqs. (9), (10), (12)–(14) and (17) represent the final set of equations
for isothermal viscoelastic 1D membrane model utilized in this work.
More detailed derivation of the model is provided in our previous work
[55]. Note that due to a geometrical symmetry of the film, only 1/4th of
the film cross-section can be used in the calculation as showed in [68].

2.3. Boundary conditions

In order to solve the model equations, boundary conditions for
downstream, Eq. (18), and upstream region, Eq. (19), have to be pro-
vided.

=u X DR( ) (18)

= = =u e L
τ τ τ
(0) 1 (0) 1 (0) 1
(0) (0) (0)xx yy zz (19)

At the downstream region, draw ratio is prescribed as the desired
value that is satisfied by a priori unknown magnitude of the drawing
force. Upstream area (i.e. extrusion die exit region) is defined by the
known average melt speed and die dimensions (gap size and width)
whereas diagonal components of the extra stress tensor τxx , τyy and τzz
have to be calculated via Eq. (11) utilizing cxx, cyy and czz components of
the recoverable strain tensor satisfying the following set of equations:

− − + − − =− −E
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c c β β c c[( ) (1 ) ( )] 1 0xx zz zz xx
1 1

(20)
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1

1 1

(22)

Eq. (20) arises from the momentum conservation equation (Eq. (8)),
Eq. (21) from the melt incompressibility assumption and Eq. (23)
characterizes the polymer melt stress state at the die exit region as the

Table 1
Summarization of utilized dimensionless quantities.

Dimensionless component of stress tensor

=τ τ e L
Fii

ii 0 0

Dimensionless spatial dimensions and streamwise velocity

= = = =x x
X

e e
e

L L
L

u u
u0 0 0

Dimensionless numbers

= = = =DR u X
u

De λu
X

A X
L E

FX
Gλe L u

( ) 1
0

0

0 0 0 0
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ratio of the secondary to primary normal stress difference, −N2/N1.
This ratio is calculated from the fully-developed slit flow at the extru-
sion die exit as follows

− = − −
−

N
N

τ τ
τ τ
(0) (0)
(0) (0)

zz yy

xx zz

2

1 (23)

2.4. Numerical scheme

The entire set of the first-order ordinary differential equations,
which comprises from equations for film half-width (Eq. (9)), half-
thickness (Eq. (10)), velocity (Eq. (17)), components of the recoverable
elastic strain tensor (Eqs. (12)–(14)) and boundary conditions (Eqs.
(20)–(23)), was solved by 4th order Runge–Kutta method implementing
adaptive step-size control. At the beginning, take-up force was guessed
and consequently increased or decreased for every following iteration
until the given draw ratio was achieved. Solver was developed in the
C++ programming language and coupled with GNUPLOT plotting
software for automatic graph generation. Typical computational time
for one calculation of prescribed DR was about 2 min on the PC with the
following hardware parameters: CPU: Intel Core 2 Quad Q9650
(3.00 GHz), RAM: 8 GB DDR2, GPU: Sapphire Radeon HD 3870, SSD:
Crucial 256 GB.

3. Results and discussion

3.1. Theoretical analysis of neck-in phenomenon

3.1.1. The role of extensional rheology, Deborah number and −N2/N1

ratio at the die exit
In order to understand the role of extensional rheology, Deborah

number and die exit stress state on the maximum attainable neck-in, 3
groups of virtual materials having three different levels of uniaxial
strain hardening defined by Eq. (24) were used.

η
η3

E U, , max

0 (24)

Here, ηE, P,max is the maximum steady uniaxial extensional viscosity
and η0 stands for the Newtonian viscosity. In each group, 5 virtual
materials were generated having the same level of uniaxial extensional
strain hardening (1.3, 3.4 and 7.1) but different level of planar exten-
sional strain hardening (1.10–1.53, 2.9–4.2 and 6.2–7.9) and the zero-
shear rate second to first normal stress difference ratio (0.3–0.6) de-
fined by Eq. (25) and Eq. (26), respectively.

η
η4

E P, , max

0 (25)

⎜ ⎟⎛
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N
N
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γ̇ 0

2
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Here, ηE, P, max is the maximum steady planar extensional viscosity,
γ̇ is the shear rate, N1 and N2 is the first and second normal stress
difference at the die exit defined (for the post-die coordinate system
depicted in Fig. 1) as follows

= −N τ τxx zz1 (27)

= −N τ τzz yy2 (28)

Modified Leonov model parameters together with corresponding
η

η3
E U max, ,

0
, η

η4
E P max, ,

0
and −→ ( )lim

γ

N
N˙ 0
2
1

values are provided in Table 2 for the 15

utilized virtual polymer melts.
Deborah number was varied from 0.01 to 0.3 in the film casting

model for all 15 virtual polymer melts changing the −N2/N1 ratio from
0.001 to 2. For each simulation case, the draw ratio was adjusted high
enough (typically equal to 40) in order to reach a maximum and draw
ratio independent neck-in value, NI. Note that the neck-in is defined as
L0 −L(X), see Figs. 1 and 2. The maximum neck-in value was conse-
quently normalized by the take-up length, X, as follows.

=NI NI
X

* (29)

In order to visualize obtained trend, calculated maximum neck-in
value NI* as a function of the square root of planar to uniaxial exten-
sional viscosity ratio, η

η
E P

E U

,

,
, is provided in Fig. 4 for three selected

Deborah numbers (0.01, 0.05 and 0.3), two uniaxial extensional strain
hardening values (1.3 and 7.1) and two −N2/N1 ratios (0.001 and 1). It
is visible that firstly, an increase in the Deborah number and −N2/N1

ratio increases both, the normalized neck-in as well as its sensitivity to
η
η
E P

E U

,

,
and secondly, there exists threshold value for Deborah number

and uniaxial extensional strain hardening, above which, the neck-in
phenomenon starts to be dependent on the die exit stress state. Critical
Deborah number was calculated for given −N2/N1 ratio, above which,
a considerable deviation (more than 5 %) in the neck-in value starts to
occur. Here, the neck-in at −N2/N1= 0.001 was taken as the reference.
The effect of −N2/N1 ratio and uniaxial extensional strain hardening,
η

η3
E U max, ,

0
, (keeping the ratio of planar to uniaxial extensional strain

hardening value, /η
η

η
η4 3

E P max E U max, ,

0

, ,

0
, the same, equal to one) on the critical

Deborah number is provided in Fig. 5(a) utilizing three virtual melts
(namely Melt4_Low, Melt4_Middle, Melt4_High, see Table 2). In this
image, area below the lines represents conditions, at which the−N2/N1

ratio has practically no effect (namely lower than 5 %) on the nor-
malized maximum attainable neck-in, whereas above these lines, the

Table 2
Modified Leonov model parameters for the utilized virtual polymer melts having λ = 1.57 s and G= 85,982.61 Pa at 150°C.

Virtual material name ξ (1) ν (1) β (1) ηE U max
η

, ,
3 0

(1)
ηE P max

η
, ,
4 0

(1) −→ ( )lim
γ

N
N˙ 0
2
1

(1)

Melt1_High 4.414 0.276 0.1 7.1 6.2 0.3
Melt2_High 4.042 0.208 0.3 7.1 6.6 0.4
Melt3_High 3.816 0.174 0.4 7.1 6.8 0.45
Melt4_High 3.54 0.14 0.5 7.1 7.1 0.5
Melt5_High 2.806 0.072 0.7 7.1 7.9 0.6
Melt1_Middle 2.014 0.276 0.1 3.4 2.9 0.3
Melt2_Middle 1.882 0.208 0.3 3.4 3.1 0.4
Melt3_Middle 1.816 0.174 0.4 3.4 3.2 0.45
Melt4_Middle 1.75 0.14 0.5 3.4 3.4 0.5
Melt5_Middle 1.53 0.072 0.7 3.4 4.2 0.6
Melt1_Low 0.338 0.276 0.1 1.3 1.10 0.3
Melt2_Low 0.38 0.208 0.3 1.3 1.17 0.4
Melt3_Low 0.4 0.174 0.4 1.3 1.22 0.45
Melt4_Low 0.418 0.14 0.5 1.3 1.29 0.5
Melt5_Low 0.426 0.072 0.7 1.3 1.53 0.6
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Fig. 4. The effect of die exit stress state (−N2/N1) on the normalized maximum attainable neck-in vs. sqrt(ηE, P/ηE, U) dependence for three different Deborah numbers (De= 0.01 – top,
De= 0.05 – middle, De = 0.3 – bottom) and two virtual polymer melts having low (left) and high (right) uniaxial extensional strain hardening,

ηE U max
η

, ,
3 0

, equal to 1.3 and 7.1,

respectively.
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−N2/N1 starts to have a considerable effect (more than 5 %) on the
neck-in phenomenon. As it can be seen, firstly, the critical Deborah
number decreases with increased −N2/N1 and secondly, an increase in
η

η3
E U max, ,

0
decreases the critical Deborah number for given value of −N2/

N1. For example, adjusting −N2/N1 = 0.2 and changing η
η3

E U, ,max

0
to 1.3,

3.4 and 7.1 yields critical Deborah number equal to 0.158, 0.073 and
0.042, respectively.

The effect of /η
η

η
η4 3

E P max E U max, ,

0

, ,

0
(changing from 0.85 to 1.24) and

η
η3

E U max, ,

0
(changing from 1.3 to 7.1) is visualized in Fig. 5(b)–(d). Here, it

is visible that increase in /η
η

η
η4 3

E P max E U max, ,

0

, ,

0
increases the critical Deborah

number for given η
η3

E U max, ,

0
and −N2/N1 values. The effect was found to

be more dominant for lower −N2/N1 and higher η
η3

E U max, ,

0
.

From these results, it can be concluded that die exit stress state,
characterized via −N2/N1 ratio, has to be defined properly in order to
predict the normalized maximum attainable neck-in correctly, espe-
cially at high Deborah numbers for polymer melts with high η

η3
E U max, ,

0
and

low /η
η

η
η4 3

E P max E U max, ,

0

, ,

0
.

Note that −N2/N1 can be viewed as the variable, which is inversely
proportional to the melt planar pre-stretching at the die exit. Thus the
basic trend depicted in Fig. 5 can be physically interpreted as follows. If
the level of planar pre-stretching decreases, its effect on the maximum
attainable neck-in starts to occur at lower Deborah numbers.

3.1.2. Analytical approximation for NI*
All numerical predictions of the utilized viscoelastic film casting

model for normalized neck-in value NI* vs. square root of planar to

Fig. 5. The effect of die exit stress state (−N2/N1) on the critical Deborah number, above which, 5% deviation in normalized maximum attainable neck-in starts to occur. (a) Role of
uniaxial extensional strain hardening,

ηE U max
η

, ,
3 0

, (keeping ratio of planar to uniaxial extensional strain hardening value, /
ηE P max

η
ηE U max

η
, ,
4 0

, ,
3 0

, the same, equal to one). (b)−(d) Role of

/
ηE P

η
ηE U max

η
, ,max
4 0

, ,
3 0

(changing from 0.85 to 1.24) at fixed
ηE U max

η
, ,
3 0

, equal to 1.3 (top, right), 3.4 (bottom, left) and 7.1 (bottom, right).
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Fig. 6. The effect of Deborah number on the normalized maximum attainable neck-in vs. planar to uniaxial extensional viscosity ratio for virtual polymer melts having high (top), medium
(middle) and low (bottom) level of uniaxial extensional strain hardening considering that die exit stress state, −N2/N1, is equal to 0.001 (left) and 0.02 (right). Here, symbols and lines
represent utilized viscoelastic 1D membrane model and simple approximate solution model (Eq. (31)) predictions, respectively.
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Fig. 7. The effect of Deborah number on the normalized maximum attainable neck-in vs. planar to uniaxial extensional viscosity ratio for virtual polymer melts having high (top), medium
(middle) and low (bottom) level of uniaxial extensional strain hardening considering that die exit stress state, −N2/N1, is equal to 0.2 (left) and 0.4 (right). Here, symbols and lines
represent utilized viscoelastic 1D membrane model and simple approximate solution model (Eq. (31)) predictions, respectively.
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Fig. 8. The effect of Deborah number on the normalized maximum attainable neck-in vs. planar to uniaxial extensional viscosity ratio for virtual polymer melts having high (top), medium
(middle) and low (bottom) level of uniaxial extensional strain hardening considering that die exit stress state, −N2/N1, is equal to 0.6 (left) and 0.8 (right). Here, symbols and lines
represent utilized viscoelastic 1D membrane model and simple approximate solution model (Eq. (31)) predictions, respectively.
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Fig. 9. The effect of Deborah number on the normalized maximum attainable neck-in vs. planar to uniaxial extensional viscosity ratio for virtual polymer melts having high (top), medium
(middle) and low (bottom) level of uniaxial extensional strain hardening considering that die exit stress state, −N2/N1, is equal to 1 (left) and 2 (right). Here, symbols and lines represent
utilized viscoelastic 1D membrane model and simple approximate solution model (Eq. (31)) predictions, respectively.
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uniaxial extensional viscosity ratio η
η
E P

E U

,

,
and considering different

Deborah numbers (0.01–0.30), uniaxial extensional strain hardening
(1.3–7.1) and −N2/N1 ratios (0.001–2) is provided in Figs. 6–9 as the
symbols. In our previous work [55], it has been found that numerical
solution for NI* can be approximated by Eq. (30), if the role of −N2/N1

on the neck-in phenomenon is neglected.
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where A1, α1, φ1, A2, α2, φ2 are model constants. In order to include the
effect of −N2/N1 ratio on NI*, we have modified Eq. (30) for NI* in-
troducing −N2/N1 ratio via specific type of δ function and utilizing five
additional constants θ, ψ1, ψ2, ψ3 and ψ4. Suggested modified equation
for the NI* is given by Eq. (31).
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where
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and Deborah number, De, is given by =De λu
X
0 .

Eq. (31) was used to fit all numerical neck-in predictions for all
considered planar to uniaxial extensional viscosity ratios, Deborah
numbers, uniaxial extensional strain hardenings and −N2/N1 ratios,
which are depicted in Figs. 6–9. All identified constants of Eq. (31)
together with Root Mean Square Error, RMSE, which characterizes the
overall fitting error (see definition bellow), are provided in Table 3.
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s j
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j j
1

2
s
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where ns is the number of points whereas yj and ̂yj represent given and
predicted points, respectively. As it can be seen, the simple approximate
solution model (Eq. (31)) has very high capability to represent NI*
predictions of the utilized 1D viscoelastic membrane model very well.

3.1.3. Behavior of analytical approximation for NI* at high Deborah
numbers

For very high Deborah numbers, Eq. (31) for NI* simplifies to
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Considering that A1 and A2 are identical during a fitting procedure
utilizing Eq. (31), the change in RMSE is very small (from 0.020888 to
0.023903), which justifies to use this assumption to further simplify Eq.
(34) as follows
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where A1= 0.493, θ=7.65, ψ1= 0.985, ψ2= -0.812, ψ3= 0.524.
As it can be deduced from Eq. (35), a limiting value of NI* is a linear

function of η
η
E P

E U

,

,
with a slope of 0.493

ηE U max
η

, ,
3 0

7.65
and non-zero limiting NI*

intercept value depending on −N2/N1 as well as η
η3

E U max, ,

0
.

3.2. Analytical approximation for NI* vs. experimental data

The approximate solution given by Eq. (31), utilizing constants
provided in Table 3, was validated for 5 different polyethylenes with
basic characteristics summarized in Table 4.

In the first step, deformation rate dependent ‘steady state’ uniaxial
extensional viscosity data (taken from the transient viscosity data peaks
for given deformation rates, [60,69]) were fitted by the modified
Leonov model (Eqs. (1)–(5)) to identify its parameters, which are
summarized in Table 5. It is important to note that in the case of LDPE
170A sample, even if it was possible to fit experimental points by 5
different sets of Leonov model parameters with a practically identical
error (because number of experimental points was very low, see
Fig. 10(a)), corresponding model predictions for η

η
E P

E U

,

,
and −N2/N1 were

different (see Fig. 10(b)–(c)). This has a strong impact on the viscoe-
lastic 1D membrane model predictions for dimensionless final film half-
width vs. draw ratio, especially, for high Deborah numbers, at which
−N2/N1 (calculated at the die exit for the given shear rate and con-
sidering fully developed slit flow) plays an important role (see
Fig. 10(d)). This suggests that the Leonov model parameters should be

Table 3
Summarization of all constants appearing in Eq. (31) for normalized maximum attainable neck-in, NI*, which was used to fit all numerical neck-in predictions. The root mean square
error, RMSE, was equal to 0.020888.

θ A1 A2 α1 α2 φ1 φ2 Ψ1 Ψ2 Ψ3 Ψ4

7.43 0.593 0.471 1,073.742 99.757 2.113 1.162 1.027 −0.849 0.514 3.953

Table 4
Basic characteristics for tested polymeric samples.

Polymer sample MFI (g/10 min) Mw (kg/mol) Mw/Mn (1) Newtonian viscosity, η0 (Pa s) Temperature, T0 (°C) Flow activation energy, Ea (kJ/mol) Ref.

LDPE 170A 0.7 185.9 6.07 134,992 150 40 [38,40]
PE-A 6.7 163 9.1 16,220 130 49.887a [47]
PE-B 4.1 102 6.6 37,720 130 49.887a [47]
PE-C 4.3 85 6.0 36,033 130 49.887a [47]
LDPE C 8.07 554 26 21,970 125 52.020b [18]

a Note, that Ea was calculated here as Ea= αR, where α is the Arrhenius law parameter equal to 6,000 K provided in [47] and R is the universal gas constant equal to 8.3144598 J/K/
mol.

b Converted from Kcal/mol.
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determined by using a uniaxial extensional viscosity data measured at
very wide extensional strain rates and utilizing other properties such as
planar extensional viscosity, N1 and N2, if they are available. A com-
parison between the uniaxial extensional viscosity data for all five
polyethylene samples (taken from [18,37,38,40,47]) and corresponding
modified Leonov model predictions for uniaxial as well as planar

extensional viscosities is provided in Fig. 11. As it can be seen, single-
mode modified Leonov model has a capability to describe uniaxial ex-
tensional viscosity for all samples.

In the second step, material relaxation time, λ, mean extensional
strain rate in the air gap, ( )du

dx M
, and shear rate at the die exit (corrected

for the non-Newtonian behavior) [70,71] γ̇COR, were determined for
processing conditions and summarized for all samples in Table 6 as
follows:

⎜ ⎟= ⎡
⎣⎢

⎛
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λ λ T E
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Fig. 10. Comparison between experimental data for LDPE 170A (T=150°C), given processing data (De= 0.253, X= 10 mm, see Table 6) taken from [37,38,40] and corresponding
model predictions for five virtual materials with modified Leonov model parameters summarized in Table 2. (a) LDPE 170A uniaxial extensional rheology, (b) planar to uniaxial
extensional viscosity ratio, (c) second to first normal stress difference ratio, (d) dimensionless final film half-width as the function of draw ratio.

Table 5
Modified Leonov model parameters for polymeric materials with basic characteristics
provided in Table 4.

Polymer sample λ (s) G (Pa) ξ (1) ν (1) β (1) T0 (°C)

LDPE 170A 1.57 85,982.61 1.53 0.072 0.7 150
PE-Aa 9.5 1,707.37 0.41 0.0015 0.4 130
PE-Ba 15 2,514.67 0.29 0.0034 0.4 130
PE-Ca 30 1,201.10 0.09 0.0013 0.5 130
LDPE C 28.57 768.95 0.51 0.004 0 125

a Parameters are taken from [55].
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Fig. 11. Comparison between experimental data for deformation rate dependent uniaxial extensional viscosity taken from [18,37,38,40,47], and corresponding single-mode modified
Leonov model predictions for uniaxial as well as planar extensional viscosities. (a) PE-A, T= 130°C, (b) PE-B, T = 130°C, (c) PE-C, T= 130°C, (d) LDPE 170A, T = 150°C, (e) LDPE C,
T = 125°C.
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Here λ(T0) represents relaxation time at the reference temperature,
T0, (Table 5), Ea is the flow activation energy (Table 4), R is the uni-
versal gas constant equal to 8.3144598 J/K/mol, u is the take-up ve-
locity, u0 is the die exit velocity, X is the air gap, Q is the overall vo-
lumetric flow rate, L0 is the die half-width, e0 is the die half-gap and n0
is the index of non-Newtonian behavior (equal to 0.3464 as the typical
value for LDPEs [72]). The exponential term in Eq. (36) represents
Arrhenius shift factor [73,74] whereas the second term in Eq. (38) re-
presents Rabinowitsch correction for a rectangle channel [75]. All
parameters appearing in Eq. (31) for the normalized maximum attain-
able normalized neck-in, NI*, (i.e. De, η

η3
E U max, ,

0
, η
η
E P

E U

,

,
and −N2/N1 for

given processing parameters and materials used) were calculated by
using modified Leonov model utilizing λ, ( )du

dx M
and γ̇COR parameters

determined via Eqs. (36)–(38) (see their summarization in Table 7).
In the final step, measured values for NI*, provided in Table 6, were

compared with corresponding predictions of approximate model (Eq.
(31)) utilizing constants and parameters provided in Tables 3 and 7,
respectively (see Fig. 12(a)). As it can be seen, there is a very good
agreement between the measured data and approximate model pre-
dictions within the whole range of Deborah numbers. If the −N2/N1 at
the die exit region is considered to be unrealistically constant for all
tested LDPEs (for example equal to 0.2 as the ‘typical value’ [76]), the

Table 6
Summarization of extrusion film casting processing parameters for all considered polymer samples taken from the open literature [18,37,47].

Polymer sample Die Width, 2L0 (mm) Die Gap, 2e0 (mm) Air Gap, X (mm) Temperature, T (°C) Die Exit Velocity, u0 (mm/s) Draw Ratio, DR (1) NI* (1) Ref.

LDPE 170A 100 0.46 228 190 4.3 17.1 0.1537 [37]
PE-A 600 0.80 160 320 46.6a 42.9b 0.2466 [47]
PE-B 600 0.80 190 320 46.6a 42.9b 0.3275 [47]
PE-C 600 0.80 220 320 46.6a 42.9b 0.5159 [47]
LDPE C 250 0.95 90 190 5.1 65.2c 0.2973 [18]
LDPE 170A 100 0.46 10 190 4.3 9.6 0.7867 [37]

a Die exit velocity was determined based on the die width (2L0), die gap (2e0), melt density (ρ) and mass flow rate (MFR) as u0=MFR/(ρ2L02e0), where MFR= 60 kg/h and melt
density ρ = 745 kg/m3 [47].

b Draw ratio was determined from die exit velocity and take-up velocity as DR=u/u0. Take-up velocity is provided in [47] as u= 120 m/min.
c Calculated based on a take-up velocity at the drawing drum.

Table 7
Summarization of all parameters appearing in Eq. (31) for the normalized maximum attainable normalized neck-in (i.e. De,

ηE U max
η

, ,
3 0

,
ηE P
ηE U
,
,

and −N2/N1) calculated by using modified
Leonov model utilizing material relaxation time, λ, mean extensional strain rate in the air gap, ( )du

dx M
, and shear rate at the die exit (corrected for the non-Newtonian behavior), γ̇COR,

determined for processing conditions summarized for all samples in Table 6.

Polymer sample λ (s) ( )du
dx M

(1/s) γ̇COR (1/s) De (1) −N2/N1 (1) ηE P
ηE U
,
,

(1)
ηE U max

η03
, , (1)

LDPE 170A 0.588 0.300 91.363 0.011 0.680 1.547 3.393
PE-A 0.079 10.281 569.402 0.019 0.405 0.833 9.299
PE-B 0.125 8.879 569.402 0.026 0.406 1.102 4.198
PE-C 0.250 10.281 569.402 0.061 0.500 1.293 2.047
LDPE C 3.149 3.638 52.469 0.178 0.017 0.825 10.096
LDPE 170A 0.588 3.707 91.363 0.253 0.680 1.910 3.393

        

12a) 12b) 

Fig. 12. Normalized maximum attainable neck-in value, NI*, as the function of Deborah number for LDPE 170A, PE-A, PE-B, PE-C, and LDPE C polymers for the processing conditions
summarized in Table 6. Experimental data (taken from [37,38,40,47,18]) and proposed analytical model predictions (Eq. (31)) are given here by the open and filled symbols, respectively.
(a) −N2/N1 is given by the modified Leonov model predictions for particular die exit shear rates, which are provided in Table 7 for each individual case, (b) −N2/N1 is considered to be
constant, equal to 0.2.
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model failed to predict NI* for Deborah numbers larger than 0.1 (see
Fig. 12(b)), which confirms existence of the critical Deborah number,
above which, the neck-in phenomenon starts to be strongly dependent
on the die exit stress state.

Based on the performed analysis, it can be concluded that the ap-
proximate model, which relates the normalized maximum attainable
normalized neck-in with De, η

η3
E U max, ,

0
, η
η
E P

E U

,

,
and −N2/N1 according to Eq.

(31), can be considered as a useful tool for material, processing and die
design optimization in order to suppress unwanted neck-in phenom-
enon occurring during a production of thin flat films.

4. Conclusions

In this work, the effect of second to first normal stress difference
ratio at the die exit, −N2/N1, uniaxial extensional strain hardening,
η

η3
E U max, ,

0
, planar-to-uniaxial extensional viscosity ratio, η

η
E P

E U

,

,
, and Deborah

number, De, has been investigated via viscoelastic isothermal modeling
utilizing 1D membrane model and a single-mode modified Leonov
model as the constitutive equation. Based on the performed parametric
study, it was found that an increase in −N2/N1 ratio and De increases
both, the neck-in as well as its sensitivity to η

η
E P

E U

,

,
. There exists a

threshold value for Deborah number and η
η3

E U max, ,

0
, above which, the

neck-in starts to be strongly dependent on the die exit stress state,−N2/
N1. It was found that such critical De decreases if −N2/N1,

η
η3

E U max, ,

0
in-

creases and/or /η
η

η
η4 3

E P max E U max, ,

0

, ,

0
decreases. Numerical solutions of the 1D

membrane viscoelastic model, utilizing modified single-mode Leonov
model as the constitutive equation, were successfully approximated by
a dimensionless analytical equation expressing the normalized max-
imum attainable neck-in with η

η3
E U max, ,

0
, η
η
E P

E U

,

,
, −N2/N1 and De. Suggested

equation was tested by using the experimental data taken from
[18,37,38,40,47] for five different polyethylenes where
0.011≤ De≤ 0.253, ≤ ≤0.825 1.910η

η
E P

E U

,

,
, ≤ ≤2.047 10.096η

η3
E U max, ,

0
and

≤ − ≤0.017 0.680N
N
2
1

. It was found that approximate model predictions
are in a very good agreement with the corresponding experimental data
within the whole range of investigated Deborah numbers. Interestingly,
the neck-in predictions for Deborah numbers larger than 0.1 became
unrealistic, if the −N2/N1 at the die exit region is not taken into ac-
count, which confirms the existence of critical Deborah number, above
which, the neck-in phenomenon starts to be strongly dependent on the
die exit stress state. It is believed that the obtained knowledge together
with the suggested simple analytical model can be used for optimization
of the extrusion die design (influencing flow history and thus die exit
stress state), molecular architecture of polymer melts and processing
conditions to suppress neck-in phenomenon in a production of very thin
flat films.
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ABSTRACT 

In this work, stable numerical scheme has been developed for 1.5D film casting model of 

Silagy et al. (Polym Eng Sci 36:2614-2625, 1996) utilizing viscoelastic modified Leonov model 

as the constitutive equation and energy equation coupled with crystallization kinetics of 

semicrystalline polymers taking into account actual temperature as well as cooling rate. Model 

has been successfully validated on the experimental data for linear isotactic polypropylene 

taken from the open literature. Drawing distance, draw ratio, heat transfer coefficient and die 

exit melt temperature were systematically varied in the utilized model in order to understand 

the role of process conditions on the neck-in phenomenon (unwanted film width shrinkage 

during stretching in the post die area) and crystalline phase development during flat film 

production. It is believed that the utilized numerical model together with suggested stable 

numerical scheme as well as obtained research results can help to understand processing 

window for production of flat porous membranes from linear iPP considerably. 
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1 INTRODUCTION 

For the production of transparent packaging materials via cast film process, high demands 

are required on the optical properties of the manufactured thin films, which can be achieved by 

the use of wide extrusion dies, very high processing temperatures and short stretching distances 

minimizing the neck-in phenomenon and related dog-bone defect. The film cooling is not 

sufficient and the temperature field is rather uniform in this spatial configuration. It was shown 

in early studies devoted to the heat transfer in film casting, [1–3] and [4] (measured temperature 

drop by IR camera was less than 15°C), that such flows can be viewed as the isothermal. On the 

other hand, if the stretching distance increases too much, film temperature decreases, melt 

viscosity increases and temperature and/or stress induced crystallization may start to occur, 

which can influence the process considerably. Effect of the temperature in film casting [5] have 

been experimentally investigated for PET polymer using infrared thermography apparatus with 

the capability to measure the temperature variation in film width and axial direction (machine 

direction). It was concluded that the temperature variations should be accounted for geometries 

with large die width and take-up length greater than 1/10 of die width. 

There are two contradictory practices of setting up the processing conditions depending on 

whether final film is to be used for packaging or membrane applications. Thin films for 

wrapping/packaging should possess transparency with low haze and high clarity whereas 

precursor films for microporous membrane should contain crystalline phase. The crystallization 

evolution of semi-crystalline polymers is strongly influenced by applied processing conditions, 

when under quiescent isothermal conditions of crystallization, the kinetics is a function of 

temperature whilst in quiescent non-isothermal case, additionally, rate of cooling comes into 

play [6]. Especially, during high cooling rates often encountered in a fabrication of porous 

membranes. A great amount of research effort on the crystallization and flow induced 

crystallization in the film casting process has been done by group of Titomanlio and 
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Lamberti [7–17]. Very early crystallization models [18–20] were developed for metal materials 

under the constant temperature, that is, crystallization rate and thermal history is not linked 

together. Next step in the model development was introduction of Kolmogoroff-Avrami-Evans 

equation describing the evolution of crystallization through the time [19, 21–23]. Further works 

[24, 25] and [26] used isokinetic hypothesis which accounts for proportionality between crystal 

nucleation and its growth rate. Advantage in this case is quite simple determination of model 

parameters that does not require any special apparatus, just differential scanning calorimetry 

(DSC) is needed. More recently, Ziabicki has introduced model, which includes transient and 

non-isothermal effects [27, 28]. 

Experimental investigation of crystallization in fast-cooling experiments were carried out 

[29, 30] usually by DSC or by using fast scanning chip calorimetry, FSC, allowing to reach 

cooling rates in order of thousands of K/s [31]. For polypropylene, it has been shown that high 

chain orientation in the melt state can lead to production row nucleated lamellar structure [32]. 

Isotactic polypropylene is significant commercial thermoplastic polymer with variety 

industrial applications and can be considered as a good candidate for gas separation, filtration, 

medical application, air-permeable membranes in advanced apparel. 

In the last decades, polypropylene microporous membranes are broadly applied in industry 

for Lithium ion batteries in the form of separators to keep electrodes away from each other 

(avoidance of electrical short circuit) as well as to simultaneously allow the transportation of 

ionic charge carriers [33–35]. PP has certain superior properties that favors it over polyethylene 

for such use as excellent dimensional stability at high temperatures, high melting temperature, 

higher chemical resistance and good mechanical properties. Isotactic Polypropylene and its 

inherited polymorphism enables crystallization into different crystal modifications during 

solidification depending on the cooling conditions [36–38]. 
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Polypropylene membranes are usually fabricated by thermal-induced phase separation, 

non-solvent-induced phase separation (using e.g. mineral fillers) and dry process based on 

melt-stretching mechanism. In particular, the latter method, so-called MEAUS 

(melt extrusion-annealing-uniaxial stretching) technology, possesses advantage of low 

environmental pollution footprint since use of solvents may be avoided and lower expenses. 

The fabrication process of membranes based on melt-stretching approach is applicable for 

semi-crystalline polymers and can be distinguished into three major consecutive stages: first, 

precursor film with lamellar crystalline structure is produced; second, the film is annealed to 

thicken lamellae and obliterate the defects of crystalline phase (improved uniformity and 

lamellae orientation through melting and recrystallization [39]); third, stretching is applied 

upon the film at low and high temperature to create voids due to lamellae separation and enlarge 

them into the microporous structure, respectively. To keep good dimensional stability over time 

and lower the shrinkage of the produced microporous membranes, additional treatment step of 

heat setting [40] is usually included. During the first stage, polymer characteristics and 

extrusion processing conditions are important in generation of row-nucleated lamellar structure 

[41]. Polymer architecture, molecular weight and molecular weight distribution seem to be the 

key material characteristics responsible for the formation of appropriate crystalline 

microstructure [39, 42–45] as necessary presumption for creation of stretching-generated pores 

with even spatial distribution and suitable size. For cast film processing conditions, it has been 

reported [46] that increasing in the draw ratio and severe cooling conditions at the area of die 

exit has a significant effect on the crystal orientation. Further research was conducted for 

a much lower chill roll temperatures and different die temperatures [47]. 

Investigation of crystallization development/flow-induced crystallization by means of 

simultaneous modelling with process kinematic equations has already been conducted in 

the field of fiber spinning process [48–56]; however, to our best knowledge, only a sparse 
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attention has been paid for the film casting process. Thus, it is not surprising that processing 

window for the production of porous membranes, flow stability and the role of process 

parameters are not fully understood yet. In order to fill this knowledge gap, novel viscoelastic 

film casting model utilizing 1.5D membrane approximation [57], modified Leonov model as 

the constitutive equation [58, 59] and energy equation coupled with advanced crystallization 

kinetics [27, 28, 60] was derived, validated and consequently used in the detailed parametric 

study. 
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2 MATHEMATICAL MODELLING 

2.1 Film casting model 

To determine basic process variables in deformation flow with free surface in the post die 

area, the one-dimensional membrane model [57] for extrusion film casting was employed and 

numerically solved. Even though the dimensionality of the model is unity, it possess 

the capability to predict both, the reduction in film thickness as well as film width shrinkage 

owning to assumed flow kinematics [61]. From this point of view, the model might be 

considered as a pseudo 2D or 1.5D and principal velocities (see Figure 1) are allowed to varied 

along the axial direction as follows 

 

u u(x)

v v(x, y) yf (x)

w w(x, z) zg(x)



 

 

 (1) 

Here, velocity in axial, transversal and thickness direction is denoted as u, v and w, respectively. 

The membrane model comprises of governing equations for continuity and momentum 

conservation that are simultaneously solved with equation of energy and viscoelastic 

single-mode modified Leonov model as the constitutive equation. 

 

2.2 Constitutive equations 

The utilized modified Leonov model is based on heuristic thermodynamic arguments 

resulting from the theory of rubber elasticity [58, 62–66]. In this constitutive equation, a fading 

memory of the melt is determined through an irreversible dissipation process driven by the 

dissipation term, b. 
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From mathematical viewpoint, it is relating the stress and elastic strain stored in the material 

as: 

 
1

1,c 2,c

W W
2 c c

I I


  

        
 (2) 

where τ  is the stress, and W, the elastic potential, which depends on the invariants I1,c and I2,c 

of the recoverable Finger tensor c ,  

 
 

 
n 1 n 1

1,c 2,cI I3G
W 1 1 1

2 n 1 3 3

         
                           

 (3) 

where G denotes linear Hookean elastic modulus,  and n are numerical parameters. Leonov 

assumed that the dissipative process acts to produce an irreversible rate of strain 
p

e    

 
11,c 2,c

p

I I
e b c b c

3 3

   
        

   
 (4) 

which spontaneously reduces the rate of elastic strain accumulation. Here, δ  is the unit tensor 

and b stands for dissipation function defined by Eq. 6. This elastic strain c  is related to 

the deformation rate tensor D  as follows 

 
p

c c D D c 2c e 0        (5) 

where c  is the Jaumann (corotational) time derivative of the recoverable Finger strain tensor. 

In this work, the Mooney potential (i.e. n=0 in Eq. 3), and the dissipation function b proposed 

in [59] (see Eq. 6) have been employed. 

  
 

 
1,c

1,c 1,c

1,c

sinh I 31
b I exp I 3

4 I 3 1

                

 (6) 

Here,  and  are adjustable model parameters.  
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2.3 Continuity and momentum conservation equations 

The essential model equations in this section were transformed to the dimensionless form 

with the following convention and in accordance with the open literature [57]: the zero subscript 

and overbar sign denotes initial (at the die values) and dimensionless corresponding quantity, 

respectively. Then, the dimensionless component ii of the extra stress tensor 
iiτ  writes 

 ii 0 0
ii

e L

F


   (7) 

where F is drawing force exerted onto film, e0 and L0 is half-width and half-thickness of the film 

at the die, respectively. 

Another set of dimensionless numbers is related to the film dimensions and velocities. 

 
x

x
X

 ;   
0

e
e

e
 ;   

0

L
L

L
 ;   

0

u
u

u
  (8) 

Where, x is the actual axial position in air gap, X is the length of air gap and u is axial velocity 

of the film. Further dimensionless numbers express intensity of film drawing as draw ratio, DR, 

melt elasticity as Deborah number, De, basic geometry of the process as aspect ratio, A, and 

dimensionless drawing force as E. 

 
0

u(X)
DR

u
 ;   0u

De
X


 ;   

0

X
A

L
 ;   

0 0 0

1 FX

E G e L u



 (9) 

Here, melt relaxation time and elastic modulus, both at the die, is denoted as λ and G, 

respectively. 

Then, the conservation of mass under the assumption of melt incompressibility in any position 

within the drawing distance must comply following formula 

 eLu 1  (10) 

Considering the membrane approximation for a thin film in the presence of a constant drawing 

force, the momentum conservation equation yields 
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  xx zz u 0      (11) 

Making use of the kinematic free-surface and stress-free surface boundary condition, 

the unknown functions in Eq. 1. (i.e. f(x) and g(x)) can be determined and the film width-stress 

relationship at given dimensionless axial position, x , Eq. 12 deduced as 

 
yy zz

xx zz

dL
A

dx

  
 

  
 (12) 

Differentiating Eqs. 10 and 11 with respect to x  variable and after algebraic rearrangement, 

the derivative of the dimensionless film half-thickness with respect to x  leads to 

 
de 1 dL 1 du

e
dx L dx u dx

 
   

 
 (13) 

Utilization of Mooney potential in the modified Leonov model constitutive equation (i.e. when 

n=0 and β≠0 in Eq. 3), the relationship between the dimensionless stress and recoverable strain 

takes the following form  

 
1

ii ii ii ii

E E E
c c c

De De De

      (14) 

To determine the diagonal components of the recoverable strain tensor, cii, and their derivatives 

with respect to x , the membrane model and constitutive equations were linked together 

yielding following formulas 

 xx
xx x

dc 1 du 2b
2c Z

dx u dx u
   (15) 

 yy

yy y

dc 1 dL 2b
2c Z

dx L dx u
   (16) 

 zz
zz z

dc 1 de 2b
2c Z

dx e dx u
   (17) 

where the dimensionless dissipation function, b ,  and 
iZ  are defined as 
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  
 

 
1,c

1,c 1,c

1,c

sinh I 31
b I exp I 3

4De I 3 1

                

 (18) 

  1 1 1 1

i ii ii ii xx yy zz xx yy zz

1
Z c c c c c c c c c

3

    
        

 
 (19) 

To complete the ensemble of equations, the express for dimensionless streamwise deformation 

rate is constituted by combination of Eqs. 10, 11 and 14 as follows 

 
   

 

x z x z z x zz2 2

zz xx zz

zz xx
xx zz xx zz

xx zz

1 1 u dL
b Z Z Z Z b Z Z c 1

c c L dx cdu

dx c c Deu
c c c c

c c 2E

   
              

   
 

      
 

 
(20) 

Listed equations in this section, namely Eqs. 12, 13, 15, 16, 17 and 20, represent the basic 

isothermal viscoelastic 1.5D membrane model based on the constitutive equation of modified 

Leonov model and their more detail derivation can be found elsewhere [67]. In order to extend 

the model into a non-isothermal variant with capability to predict crystallization, the energy 

equation with an appropriate crystallization kinetics has to be incorporated as described in 

the following paragraph. 

 

2.4 Energy Equation 

The energy balance equation [14] takes the following form and accounts for the temperature 

change, crystallinity and flow dependency of melt viscosity. 

 
 a c

p p

2HTC T T L dXdT H

dx C m C dx

 
   (21) 

where, the L(x) is film half-width, HTC is heat transfer coefficient, Cp is specific heat capacity, 

m  is mass flow rate in quarter-cross-section, ΔH is latent heat of crystallization, T(x) and Ta is 

melt and ambient air temperature, respectively, and finally Xc(x) stands for content of 
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crystallinity in the polymer volume. Heat transfer coefficient was chosen to be a constant for 

current study as a simplification representing a total heat exchange with the surrounding 

environment. The temperature dependence of melt relaxation time, λ, is described by Arrhenius 

form with a constant activation energy Ea as follows  

 T 0     (22) 

 
a

T

r

E 1 1
exp

R T T

  
    

  
 

(23) 

where λ0 denotes melt relaxation time at the die exit, R is universal gas constant and Tr is 

reference melt temperature. 

 

Crystallization kinetics 

The crystallization kinetics model adopted in this study was originally drawn by Ziabicki 

[27, 28] and later modified by Lamberti [60]. The quiescent conditions are defined as 

 
0

m mqT T  (24) 

Since the flow induced crystallization is not included for the current study, the polymer melting 

temperature and flow induced equilibrium melting temperature are equal. 

The volume fraction of crystallized phase, χc, and function P(t) expressing the non-linear 

description of crystallinity evolution, derived according time as 

  
 

  cnc

c

eq

X t
t 1 exp P t

X
         (25) 

where K(t) is crystallization kinetics constant representing crystallization rate, Xeq is 

the equilibrium volume content of crystallinity (maximum in a crystal phase that melt can 

possess) and constant nc is of value 3 and thus nucleation is assumed as heterogeneous 

according to [28] with three dimensional crystal evolution. After differentiation with respect to 

time, the time-evolution formula is 
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 

       c cn n 1c

eq

dX t dP t
X exp P t n P t

dt dt



           (26) 

In the simplified form, the model kinetics proposed by Ziabicki [27, 28] and adopted in this 

work is as follows 

    
d

K t P t
dt

  (27) 

   c1/n

thK K 1 TZ   
(28) 

Here, Kth term is responsible for the low cooling rate crystallization, κ1, κ2 and Ec are material 

parameters determined from isothermal test, R is universal gas constant and 0

mqT  denotes 

equilibrium crystallization temperature. Bath and Aath are material parameters included into the 

model by Lamberti considering cooling history and promoting model to be capable to describe 

a crystallinity evolution at high cooling rates. Fitting parameters, κ1, κ2, Ec, Bath and Aath, for 

material used in this work were determined in [60]. 

 
 

 

 

 

2

m mc
th 1 22

mm

T T T TE
K exp exp

RT T T TT

   
          

 (29) 

Effect of cooling rate on crystallization kinetics constant is covered by non-isothermal function, 

Z, taking form of 

 
 

 

ath

5
A

m c
ath 5

m

T E
Z B T exp

RTT T T

 
   

 
 (30) 

where, cooling rate is marked as T , the derivative of the film temperature with respect to time, t. 

The formula for the transition from time to spatial coordinates is following 

 
dT dT

T u
dt dx

   (31) 
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After its application on Eq. 26 with dimensionless transformation introduced in previous section 

and some rearrangement, the final form of equation for the crystallinity evolution in 

dimensionless spatial coordinates demands 

 
 

    
 c cn n 1c

eq c

0

dX x dP x X
X exp P x n P x

dx dx uu



          (32) 

and semi-dimensionless form of energy equation, Eq. 21, is then given as 

 
 a c

p p

2HTC T T LX dXdT H

dx C m C dx

 
   (33) 

 

Effect of crystallinity on viscosity 

Beside the effect of temperature on the melt relaxation time, the effect of crystallinity on 

viscosity is included into the model through the function µXc that acts directly on the initial 

elastic modulus G0; this approach was presented by Titomanlio in [68]. 

  
cX c 0G X G  (34) 

This S-shaped function remains unity as the amount of crystallinity in volume is low and at 

the certain point starts to deviate and sharply raise simulating the phase transition from melt to 

the solid state: 

  
cX c m

c

h
X 1 f exp

X

 
    

 
 (35) 

It is worth to note that Eq. 11 is no more globally satisfied as in previous works where 

modulus G was taken as a constant [67, 69] and must be treated as follows 

 
xx zz(X) (X) u(X)

xx zz
0 0 0

d d du 0
 

        (36) 
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2.5 Boundary Conditions 

Proposed model equations can be mathematically solved only if an appropriate boundary 

conditions for downstream, Eq. 37, and upstream region, Eq. 38, are defined.  

  u X DR  (37) 

 

 u 0 1       e 0 1       L 0 1  

xx (0)          
yy (0)          zz (0)  

cX (0) 0     DIET(0) T  

(38) 

Regarding the downstream region, only the desired value of draw ratio must be prescribed that 

is satisfied by a priori unknown magnitude of the drawing force which is an object of search. 

In upstream area (i.e. extrusion die exit region), the count of required values is broader and 

includes the definition of axial velocity, die dimensions, that is gap size and width, which are 

equal to unity due its dimensionless expression, and melt temperature, and crystallinity that is 

assumed to be zero. Due to the employed viscoelastic constitutive equations, the stress state at 

the die have to be imposed, therefore the diagonal components of the extra stress tensor xxτ , 

yyτ  and zzτ  are calculated through Eq. 14 utilizing cxx, cyy and czz components of the recoverable 

strain tensor satisfying the following set of equations 

      1 1

xx zz zz xx

E
c c 1 c c 1 0

De

       
   (39) 

 xx yy zzc c c 1  (40) 

 
 1 1

zz yy yy yy zz zz
2

1

E c c c c c cN

N Deu

      
    (41) 

where Eq. 39 arises from the momentum conservation equation (Eq. 11), Eq. 40 from the melt 

incompressibility assumption. Eq. 42 characterizes the polymer melt stress state at the die exit 
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region as the ratio of the secondary to primary normal stress difference, −N2/N1, and is 

calculated from the fully-developed slit flow at the extrusion die exit as follows 

 
   

   
zz yy2

1 xx zz

0 0N

N 0 0

  
  

  
 (42) 

 

2.6 Numerical Scheme 

To solve the full set of first-order ordinary differential equations, the numerical scheme 

based on the 4th order Runge-Kutta method implementing adaptive step-size control was 

adopted. Process of calculation is commenced by guessing a value of drawing force followed 

by iterative determination of the stress boundary condition via Eqs. 39–42. Then the main set 

of eight differential equation is solved in the following order: crystallization kinetics (Eq. 32), 

energy of equation (Eq. 33), film half-width (Eq. 12), axial velocity (Eq. 20), film half-thickness 

(Eq. 13) and components of the recoverable elastic strain tensor (Eqs. 15–17). Depending on 

wheatear the desired draw ratio is achieved, the initially estimated drawing force was iteratively 

updated (increased/decreased) for every following calculation until convergence (see Figure 2) 

using bisection method. Oscillations in temperature profile development, that were occasionally 

present in calculations causing the instability of computation, were fixed by applied stabilizing 

method of weighting the result of Eq. 33 for actual and previous position x. Due to a geometrical 

symmetry of the film, only 1/4th of the film cross-section was used in the calculation as showed 

in [70]. This basic computational scheme for the determination of unknown process variables 

was looped according demands of currently conducted parametric studies and eventually 

complemented by module for a grid linear interpolation to create parametric maps. The entire 

solver was developed in the C++ programming language and coupled with GNUPLOT plotting 

software for automatic graph generation. Typical computational time for one calculation of 

prescribed DR was about 1 minute on the PC with the following hardware 
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specifications: CPU: Intel Core i7-7700 at 3.60 GHz, RAM: 32 GB DDR4, GPU: AMD 

Radeon Pro WX 4100 with 4 GB of video memory, SSD: HP Z TurboDrive G2 512 GB.  
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3 RESULTS AND DISCUSSION 

3.1  Model validation 

Proposed non-isothermal film casting model has been tested for well characterized linear 

isotactic PP (for the basic characteristics see Table 1) and given processing conditions [8, 15]. 

All model parameters for given material and processing conditions are summarized in Table 2 

and Table 3, respectively. In this work, single-mode modified Leonov model utilizing the 

lowest relaxation time, =0.01 s, which is typical for polyolefins [71, 72], was used. It was 

shown by Thete et al. [72] that utilization of lowest relaxation time in the cast film modeling 

can provide reasonable stress predictions in both, axial and transverse directions. Knowing 

Newtonian viscosity, 0=0·G0, and relaxation time at T=220°C, temperature independent 

modulus G was calculated to be 740,199 Pa. The crystallization kinetics parameters in the 

function given by Eq. 32 were set for given material according to [60], see Table 4. It was 

shown that the modulus increases significantly with the film crystallinity [14, 16, 73, 74], which 

can be taken into account during cast film modeling via Eq. 34. In this work, adjustable 

parameters of Eq. 35 were chosen according to Table 5 in order to predict significant modulus 

increase even at very low crystallinity levels, which seems to be reasonable [14, 16]. Due to the 

fact that tested iPP melt is linear, i.e., it shows extensional strain thinning, modified Leonov 

parameters  and ,  appearing in Eq. 6 for dissipation function, were adjusted to be equal to 

0 and 0.5, respectively, whereas the parameter  in Eq. 3 was adjusted to be 0.5 (just 

between 0 and 1 meaning that first as well as second invariant of recoverable Finger tensor 

contributes equally to the elastic potential). Deborah number at the die exit is equal to 6·10-4  

for given material and processing conditions (i.e. much lower than 0.3), which means that there 

is no role of die exit stress state on the post die calculations as shown in our previous work [69]. 

Thus, the second to first normal stress ratio at the die exit was kept the same in all 
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calculations, 2

1

0 2
N

.
N

   according to [75]. The only free parameter in the presented model is 

heat transfer coefficient, HTC, appearing in energy equation, Eq. 33. This parameter in not a 

priory known and thus its value was adjusted 16 J·s-1·K-1·m-2 in order to capture experimentally 

determined temperature profile between die and chill roll. Comparison between proposed 

model predictions and experimental data for linear iPP and given processing conditions 

(TDIE=200°C, De=6·10-4, DR=34.7, X=0.4 m, m =1.26·10-4 kg·s-1) is provided in Figure 3. As 

it can be seen, model predictions for film half-width, axial velocity, temperature and 

crystallinity (especially at high draw distances) are in good agreement with the corresponding 

experimental data. The fact, that non-isothermal model is capable to describe experimental 

reality for linear iPP at given processing conditions justify to use the model in detailed 

parametric study. 

 

3.2 Parametric study 

3.2.1 The role of heat transfer coefficient, draw and aspect ratio on the onset of crystalline 

phase in the produced film 

The key step in production of PP porous membranes is production of a precursor film with 

a row-nucleated lamellar structure [42], i.e. with shish-kebab crystalline phase created due to 

extensional flow in the post die area, which consists of an extended chain crystal (a “shish”) 

and folded chain crystals (“kebabs”) [76]. The processing window is thus rather narrow and 

detailed role of processing conditions on the development crystalline phase in the resulting film 

is still rather unclear. In this work, the processing window is defined as the conditions (given 

by aspect and draw ratios, TDIE and draw ratio), during which produced film contains non-zero 

crystalline phase. Example is provided in Figure 4 for one fixed heat transfer coefficient value 

2.5 J·s-1·K-1·m-2. Here, the area above the symbols (calculated by the numerical model) 

represents processing conditions leading to non-zero crystallinity whereas space bellow them 

133



characterizes the region with no crystalline phase in the produced film. In this case, 

experimental process conditions used in the validation study are considered to be the reference. 

The predicted trend visualized in Figure 4 (i.e. that low draw ratios, which correspond to longer 

processing times, give rise to crystalline phase but high draw ratios do not because processing 

time is too short for crystallization) corresponds well with the experimental data 

provided in [77]. Note that numerical model predictions given by the symbols used in Figure 4 

to determine process conditions for crystalline and no-crystalline phase development are 

entitled here as the “border symbols”. 

In order to understand the role of process conditions on the onset of crystalline phase 

development in produced film, the following variables were systematically varied in particular 

ranges: aspect ratio (0.25–4), draw ratio (3–140), heat transfer coefficient (1.5–28 J·s-1·K-1·m-2) 

and die exit melt temperature (200, 225 and 250°C). The chosen ranges correspond to typical 

values used in the real production of PP porous membranes [42, 47, 78, 79]. 

Numerical model predictions for “border symbols” at given range of processing conditions 

are visualized in Figures 5–7. As it can be seen, the processing window for production of film 

containing crystalline phase is enlarged if TDIE decreases or HTC or A increases. This promotes 

to reach crystallization temperature in the film between the die and the chill roll. Interestingly, 

the relationship between A and DR defining “border symbols” for different TDIE and HTC is 

linear. This suggests that all numerically predicted data visualized in Figure 5–7 as the symbols 

can be easily approximated by simple analytical equation. 

 

3.2.2 Analytical approximation for critical crystallization border 

The following simple analytical equation was chosen to approximate numerical solutions 

for determination of critical border contour in A vs. DR processing diagrams visualized in 

Figures 5–7 for different TDIE and HTC. 
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   Xc DIEk (HTC,T )

Xc DIEA exp q (HTC,T ) DR  (43) 

where qXc(HTC, TDIE) and kXc(HTC, TDIE) are given as 

    k DIE kT

Xc DIE k DIE kk (HTC,T ) T HTC
 

     (44) 

      Xc DIE q DIE q q DIE qq (HTC,T ) T ln HTC T        (45) 

These equations utilize 3 independent variables (DR, HTC and TDIE) and 8 adjustable 

parameters (αk, βk, γk, δk, αq, βq, γq, δq). Analytical equation, Eq. 43, was used to simultaneously 

fit all numerically determined “border symbols” depicted in Figure 5–7 through last square 

minimization method and obtained optimum parameters are summarized in Table 6. As it can 

be seen in Figure 5–7, agreement between fitting lines and numerically obtained “border 

symbols” is very good. Thus, Eq. 43 together with its parameters can be considered as reliable 

approximation of true numerical solutions of “border symbols” for linear iPP at given range of 

processing conditions.  

 

3.2.3 Determination of processing conditions, at which the Neck-in phenomenon starts to be 

influenced by heat transfer coefficients and crystallization     

It was shown that during production of transparent flat films via cast film technology 

(i.e. at very high temperatures/draw ratios and very small die-roll distances, where no 

crystalline phase is developed) the neck in phenomenon (unwanted shrinkage of the film in the 

width direction) can be reliably predicted via isothermal simulations where the heat transfers 

and crystallization are neglected [67, 69]. It is obvious that there are processing conditions, for 

which isothermal simulations are too simplistic and therefore the neck-in phenomenon cannot 

be predicted realistically. Thus, the key question is “what are the processing conditions for 

linear iPP, at which heat transfer coefficients and crystallization starts to influence the neck-in 

phenomenon” ? In order to answer this question, DR, A and HTC were systematically varied 

in the proposed numerical model for the reference processing conditions at the lowest 
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investigated melt temperature at the die exit, for which the need to utilize non-isothermal 

calculation is the most probable. For all investigated processing conditions, both, isothermal as 

well as non-isothermal calculations have been performed. For each simulated case, neck-in 

value at the chill roll was evaluated. If differences between neck-in values obtained from 

isothermal and non-isothermal calculations were lower than 5 %, it was considered that neck-in 

predictions from isothermal calculations were reliable and non-isothermal effects can be viewed 

as negligible. For the processing conditions, in which differences in neck-in were higher than 

5 %, it was considered that non-isothermal effects have to be included in the numerical 

simulations. Results of the performed parametric study are visualized in Figure 8. Here, the 

“isothermality boundary symbols” represent processing conditions, at which neck-in 

differences between isothermal and non-isothermal calculations were 5 % for given HTC value. 

The area bellow these symbols represents processing conditions for which isothermal 

calculations provide good estimate for the neck-in phenomenon whereas above these symbols, 

non-isothermal effects have to be taken into account to predict neck-in reliably. For the wide 

range of HTC, it was possible to approximate numerical solutions for “isothermality boundary 

symbols” via the following simple analytical equation 

   isok (HTC)

isoA exp q (HTC) DR  (46) 

where kiso(HTC) and qiso(HTC) are defined as  

  iso iso isok (HTC) ln HTC    (47) 

  iso iso isoq (HTC) ln HTC    (48) 

 

These equations utilize 2 independent variables (DR, HTC) and 4 adjustable parameters 

obtained by numerical data fitting (iso, iso, iso, iso), which are summarized in Table 7. As it 
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can be seen in Figure 8, Eq. 46 can approximate numerical solutions very well for the following 

range of variables: DR 3 140  , A 0.25 4   and HTC 4 30    J·s-1·K-1·m-2. 

 

3.2.4 Effect of A, DR, HTC, TDIE on cast film process      

In this part, A, DR, HTC, TDIE were systematically varied in the numerical model considering 

the reference processing conditions (HTC=16 J·s-1·K-1·m-2, TDIE=200°C, DR=37.4, X=0.4 m) 

in order to understand their effect on the dimensionless film half-width and axial velocity, 

temperature and crystallinity; all as the function of dimensionless drawing distance. 

In the first step, the aspect ratio, A, was varied from 0.01 up to 10 (via changing drawing 

distance) keeping another reference processing conditions fixed. Results are provided in Figure 

9. From here, it is visible that if A increases, neck-in increases, axial velocity profile is changing 

from convex to concave shape, film temperature decreases and crystallinity increases. 

In the second step, the draw ratio, DR, was changing from 3 to 140 (via step increase in 

take-up speed). Obtained numerical results are provided in Figure 10. Obviously, increase in 

DR leads to higher neck-in, axial film velocity, final film temperature and lower crystallinity.  

In the third step, the heat transfer coefficient, HTC, was varied from 0 to 100 J·s-1·K-1·m-2. 

As it can be seen from Figure 11, increase in HTC causes reduction in neck-in, change of axial 

velocity profile from convex to concave shape as well as decrease in film temperature.  There 

is interesting not fully intuitive relationship between HTC and film crystallinity. In more detail, 

there is range of HTCs 0–3 J·s-1·K-1·m-2, for which the final film does not contain any crystalline 

phase. If the HTC increases above some critical value (in this case above 3 J·s-1·K-1·m-2), film 

crystallinity increases, reaching the maximum and then decreasing. This suggests that there 

exists optimum HTC for given material and processing conditions, at which the amount of 

crystalline phase is maximal. 
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In the final step, melt temperature at the die exit, TDIE, was varied from 150 to 300°C. 

Obtained model predictions are visualized in Figure 12. Clearly, decrease in TDIE increases 

neck-in and crystallinity whereas film temperature and axial velocity are reduced.   
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4 CONCLUSIONS 

In this work, stable numerical scheme has been developed for 1.5D film casting model of 

Silagy et al. [57] utilizing viscoelastic modified Leonov model as the constitutive equation 

[58, 59] and energy equation coupled with crystallization kinetics of semicrystalline polymers 

taking into account actual temperature as well as temperature gradient [27, 28, 60]. Model has 

been successfully validated on the experimental data for linear isotactic polypropylene taken 

from the open literature [15].  

Aspect ratio, A, (0.25–4), draw ratio, DR, (3–140), heat transfer coefficient, HTC, 

(1.5 28  J·s-1·K-1·m-2) and die exit melt temperature, TDIE, (200, 225 and 250°C) were 

systematically varied in the utilized model in order to understand the role of process conditions 

on the onset of crystalline phase development in production of iPP flat porous membranes via 

cast film process. It was found that numerically predicted critical crystallization border in 

A vs. DR dependence for given HTC and TDIE can be successfully approximated by simple 

analytical equation.  

 Utilizing isothermal as well as non-isothermal numerical calculations, it was possible to 

determine processing conditions (in terms of DR, A and HTC at TDIE=200°C) for linear iPP, for 

which isothermal simulations are too simplistic and therefore the neck-in phenomena cannot be 

predicted realistically. It was possible to find out suitable analytical approximation for the 

“isothermality boundary” in A vs. DR dependence for different HTCs, which is applicable 

within the following range of processing variables: DR 3 140  , A 0.25 4   and 

HTC 4 30    J·s-1·K-1·m-2. 

Finally, the effect of A, DR, HTC and TDIE on the dimensionless film half-width and axial 

velocity, temperature and crystallinity (all as the function of dimensionless drawing distance) 

was systematically investigated via non-isothermal simulations for linear iPP. It was found that 

neck-in can be reduced if A or DR decreases or if HTC or TDIE increases. It has also been showed 
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that produced film crystallinity increases if A increases or if DR or TDIE decreases. The most 

interestingly, it has been revealed that if the HTC increases above some critical value, film 

crystallinity increases, reaching the maximum and then decreasing. This suggests that there 

exists optimum HTC for given material and processing conditions, at which the amount of 

crystalline phase is maximal. It is believed that the utilized numerical model together with 

suggested stable numerical scheme as well as obtained research results can help to understand 

processing window for production of flat porous membranes from linear iPP considerably.  
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5 LIST OF SYMBOLS 

Latin Symbols Meaning Unit 

A  Aspect ratio 1 

athA  Fitting parameter in crystallization kinetics 1 

athB  Fitting parameter in crystallization kinetics s 

b  Dissipation term s-1 

b  Dimensionless dissipation term 1 

c  Recoverable Finger tensor 1 

1
c


 Inverse recoverable Finger tensor 1 

0

c  
Jaumann (corotational) time derivative of the 

recoverable Finger strain tensor 
s-1 

pC  Specific heat capacity of polymer J·kg-1·K-1 

xxc  
Normal component of the recoverable Finger tensor 

in axial x-direction 
1 

yyc  
Normal component of the recoverable Finger tensor 

in transverse y-direction 
1 

zzc  
Normal component of the recoverable Finger tensor 

in thickness z-direction 
1 

D  Deformation rate tensor s-1 

De  Deborah number 1 

DR  Draw ratio 1 

p
e  Irreversible rate of strain tensor s-1 

E  Dimensionless take-up force 1 

aE  Flow activation energy J·mol-1 

cE  Fitting parameter in crystallization kinetics K 
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e  Half-thickness of the film at any x location m 

0e  
Die half-gap (half-thickness of the film at the die 

exit) 
m 

e  
Dimensionless half-thickness of the film at any x 

location 
1 

F  Take-up force (drawing force) N 

, mf , h  
Parameters in function describing the effect of 

crystallinity on elastic modulus 
1 

 f x  Rate of deformation in transverse y-direction s-1 

G  Linear Hookean elastic modulus Pa 

0G  Linear Hookean elastic modulus at the die exit Pa 

HTC  Heat transfer coefficient J·s-1·K-1·m-2 

 g x  Rate of deformation in thickness z-direction s-1 

i  Index i, noting the spatial direction 1 

1,cI  First invariant of recoverable Finger tensor 1 

2,cI  Second invariant of recoverable Finger tensor 1 

 K t  Crystallization kinetics function s-1 

thK  Isothermal function of crystallization kinetics s-1 

isok  
Slope function for determination of isothermal 

boundary 
1 

Xck  Slope function for crystallization on-set 1 

L  Half-width of the film at any x location m 

0L  
Half-width of the die (half-width of the film at the 

die exit) 
m 

L  
Dimensionless half-width of the film at any x 

location 
1 

MFR , m  Mass flow rate kg·h-1 
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nM  Number average molar mass g·mol-1 

wM  Mass average molar mass g·mol-1 

NI  Maximum attainable neck-in m 

1N  First normal stress difference Pa 

2N  Second normal stress difference Pa 

n  Non-linear Leonov model parameter 1 

cn  Type of crystallization growth 1 

 P t  Function of non-linear crystallinity evolution 1 

isoq  
Intercept function for determination of isothermal 

boundary 
1 

Xcq  Intercept function for crystallization on-set 1 

R  Gas constant J·K-1·mol-1 

T  Rate of cooling °C·s-1 

DIET  Melt temperature at the die °C 

mT  Melting temperature of polymer °C 

0

mqT  Flow induced equilibrium melting temperature °C 

T  Melt temperature °C 

rT  Reference temperature in the Arrhenius law °C 

u  
Axial velocity component of the film at any 

x location 
m·s-1 

u(X)  Chill roll speed m·s-1 

0u  Axial velocity component at the die exit m·s-1 

u  
Dimensionless axial velocity component of the film 

at any x location 
1 
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v  
Transverse velocity component of the film at any 

x location 
m·s-1 

W  Elastic potential Pa 

w  
Thickness velocity component of the film at any 

x location 
m·s-1 

X  Take-up length (stretching distance, air gap) m 

x  Position in axial x-direction m 

x  Dimensionless position in axial x-direction 1 

x, y,z  
Spatial coordinates in axial, transverse and thickness 

direction, respectively 
1 

cX  Crystallinity content in the polymer volume 1 

eqX  
Equilibrium level of crystallinity in the polymer 

volume 
1 

Z  Non-isothermal function of crystallization kinetics 1 

x y zZ ,Z ,Z  Substitution variables 1 

yyxx zz
dcdc dc

, ,
dx dx dx

 
Derivative of Finger tensor components with respect 

to dimensionless x  position 
1 

du dL de
, ,

dx dx dx
 

Derivative of dimensionless axial velocity, width 

and thickness with respect to dimensionless x  

position 

1 

cdX

dx
 

Derivative of crystallinity with respect to 

dimensionless x  position 
1 

dT

dx
 

Derivative of temperature with respect to 

dimensionless x  position 
°C 

   

Greek Symbols Meaning Unit 

iso iso iso iso, , ,     Fitting parameters in isothermal boundary function 1 
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k k k k

q q q q

, , , ,

, , ,

   

   
 Fitting parameters in crystallization on-set function 1 

T  Arrhenius law parameter 1 

  Non-linear Leonov model parameter 1 

H  Crystallization latent heat kJ·kg-1 

  Unit tensor (Kronecker delta) 1 

0  Newtonian viscosity Pa·s 

1  Fitting parameter in crystallization kinetics s-1 

2  Fitting parameter in crystallization kinetics 1 

  Melt relaxation time s 

0  Melt relaxation time at the die exit s 

cX  Effect of crystallinity on elastic modulus function 1 

  Non-linear Leonov model parameter 1 

  Non-linear Leonov model parameter 1 

P  Polymer density kg·m-3 

  Extra stress tensor Pa 

xx  Normal stress in axial x-direction  Pa 

yy  Normal stress in transverse y-direction Pa 

zz  Normal stress in thickness z-direction Pa 

xx  Dimensionless normal stress in axial x-direction 1 

yy  
Dimensionless normal stress in transverse 

y-direction 
1 

zz  Dimensionless normal stress in thickness z-direction 1 

c  Volume fraction of crystallized phase 1 
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7 TABLES 

Table 1. Basic characteristics for iPP T30G [8, 16, 17]. 

 

Mn 

(g·mol-1) 

Mw 

(g·mol-1) 

PDI 

(1) 

η0
### 

at 220°C 

(Pa·s) 

Tacticity 

(mmmm) 

Ea 

(kJ·mol-1) 

Cp
#

 

(J·Kg-1·K-1) 

ρP
#

 

(kg·m-3) 

ΔH## 

(kJ·kg-1) 

75,000 481,000 6.4 7,402 87.6% 40.092 2,200 920 209 

# – Value taken from [80] as typical value for polyolefins. 

## – Value of crystallization latent heat taken from [81] as value for fully crystalline PP. 

### – Acquired by data digitalization technique from Figure 1 in [8]. 

 

Table 2. Modified Leonov model parameters for iPP T30G at Tr=220°C. 

 

λ (s) G (Pa) ξ (1) ν (1) β (1) 

0.01 740,199 0 0.5 0.5 

 

Table 3. Summarization of processing conditions for iPP T30G taken from [15]. 

 

Ω 

(rpm) 

MFR 

(10-4 kg·s-1) 

u0 

(10-3 m·s-1) 

u(X) 

(10-3 m·s-1) 

X 

(m) 

TDIE  

(°C) 

2L0 

(m) 

2e0  

(10-4 m) 

DR  

(1) 

20 1.26 1.68 58.3 0.4 200 0.2 5 34.7 

Ambient temperature, Ta, was kept at 23°C for all numerical studies.  

 

Table 4.  Crystallization kinetics parameters for iPP T30G taken from [60]. 

 

Xeq 

(1) 

nc 

(1) 

0

mq
T  

(K) 

Ec/R 

(K) 

κ1 

(1069 s-1) 

κ2 

(1) 

Aath 

(1) 

Bath 

(10-57 s) 

0.61 3 463.15 45,570 2.778 5.871 1.7721 3.448 

 

Table 5.  Parameters used in Eq. 35 describing effect of crystallinity on elastic modulus G. 

 

f# (1) h (1) m# (1) 

2,000 10-5 1.2 

# – Value was taken from [8]. 

 

Table 6.  Parameters used in Eq. 43. 

 

αk (1) βk (1) γk (1) δk (1) αq (1) βq (1) γq (1) δq (1) 

−0.0056 0.3421 0.0077 −1.2102 0.0001 −1.0453 0.0089 −0.3079 

  

152



Table 7.  Parameters used in Eq. 46. 

 

αiso (1) βiso (1) γiso (1) δiso (1) 

0.067 0.0406 −0.8479 0.9701 
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8 FIGURES 

 

Figure 1. Schematic illustration of extrusion film casting process.  
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Figure 2. The flow diagram of implemented numerical scheme to solve the proposed film 

casting model.   
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Figure 3. Comparison between experimental data for iPP T30G (TDIE=200°C) and given 

processing conditions (De=6·10-4, DR=34.7, X=0.4 m) taken from [15] and model predictions 

for dimensionless drawing distance variables considering constant heat transfer coefficient, 

HTC=16 J·s-1·K-1·m-2. (a) Dimensionless Final Half-width, (b) Dimensionless Axial Velocity, 

(c) Temperature, (d) Crystallinity. 
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Figure 4. Predicted processing window for production of linear iPP films with (area above 

the border symbols) and without (area bellow the border symbols) the crystallized phase for 

given heat transfer coefficient (HTC=2.5 J·s-1·K-1·m-2) and melt temperature at the die exit 

(TDIE=200°C). 
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Figure 5. Effect of draw ratio, heat transfer coefficient (see numbers in J·s-1·K-1·m-2 provided 

at each data set) and melt temperature at the die exit, TDIE=200°C, on the aspect ratio, at which 

crystallization in linear iPP film starts to occur (border predicted by numerical model is given 

by the symbols, lines represents analytical approximation given by Eq. 43).  
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Figure 6. Effect of draw ratio, heat transfer coefficient (see numbers in J·s-1·K-1·m-2 provided 

at each data set) and melt temperature at the die exit, TDIE=225°C, on the aspect ratio, at which 

crystallization in linear iPP film starts to occur (border predicted by numerical model is given 

by the symbols, lines represents analytical approximation given by Eq. 43). 
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Figure 7. Effect of draw ratio, heat transfer coefficient (see numbers in J·s-1·K-1·m-2 provided 

at each data set) and melt temperature at the die exit, TDIE=250°C, on the aspect ratio, at which 

crystallization in linear iPP film starts to occur (border predicted by numerical model is given 

by the symbols, lines represents analytical approximation given by Eq. 43). 
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Figure 8. Effect of draw ratio and heat transfer coefficient (see numbers in J·s-1·K-1·m-2 

provided at each data set) on the critical aspect ratio below which the non-isothermal and 

isothermal calculations gives for linear iPP practically the same neck-in value (considering melt 

temperature at the die exit equal to 200°C, border predicted by numerical model is given by the 

symbols, lines represents analytical approximation given by Eq. 46). 
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Figure 9. Effect of aspect ratio (changed via drawing distance, X) on dimensionless-drawing-

distance dependent dimensionless film half-width (top, left), dimensionless axial velocity (top, 

right), temperature (bottom, left) and film crystallinity for the linear iPP and the reference flow 

conditions (HTC=16 J·s-1·K-1·m-2, TDIE=200°C, DR=34.7). 
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Figure 10. Effect of draw ratio on dimensionless-drawing-distance dependent dimensionless 

film half-width (top, left), dimensionless axial velocity (top, right), temperature (bottom, left) 

and film crystallinity for the linear iPP and the reference flow conditions (A=4, HTC=16 J·s-

1·K-1·m-2, TDIE=200°C).  
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Figure 11. Effect of heat transfer coefficient on dimensionless-drawing-distance dependent 

dimensionless film half-width (top, left), dimensionless axial velocity (top, right), temperature 

(bottom, left) and film crystallinity for the linear iPP and the reference flow conditions (A=4, 

DR=34.7, TDIE=200°C).  
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Figure 12. Effect of melt temperature at the die exit on dimensionless-drawing-distance 

dependent dimensionless film half-width (top, left), dimensionless axial velocity (top, right), 

temperature (bottom, left) and film crystallinity for the linear iPP and the reference flow 

conditions (A=4, DR=34.7, HTC=16 J·s-1·K-1·m-2). 

 

165



 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PAPER IV 
 



 

 

 

 



VISCOELASTIC SIMULATION OF EXTRUSION FILM CASTING 

FOR LINEAR iPP INCLUDING STRESS INDUCED 

CRYSTALLIZATION 

 

 

Tomas Barborik, Martin Zatloukal*  

 

Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin,  

Vavreckova 275, 760 01 Zlin, Czech Republic 

 

 

 

 

 

 

 

Keywords: Flat film production, polymer melt, rheology, neck-in phenomenon, heat 

transfer coefficient, flow induced crystallization. 

 

 

*Corresponding author: mzatloukal@utb.cz 

169

mailto:mzatloukal@utb.cz


ABSTRACT 

In this work, 1.5D film casting membrane model proposed by Silagy et al. (Polym Eng 

Sci 36:2614-2625, 1996) was generalized considering single-mode modified Leonov model as 

the viscoelastic constitutive equation and energy equation coupled with crystallization kinetics 

taking temperature as well as stress induced crystallization into account. The model has been 

successfully validated for the linear isotactic polypropylene by using experimental data 

collected under extremely high cooling rate processing conditions (86°C/s), which were taken 

from the open literature. It has been found that utilization of flow induced crystallization 

significantly improves model predictions, especially for the film temperature and crystallinity. 

The model was consequently used to understand the role of heat transfer coefficient on the 

neck-in phenomenon as well as on the film velocity, temperature and crystallinity profiles.  
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1 INTRODUCTION 

The PP microporous membranes have found many useful applications over time especially 

in separation processes: from microfiltration to reverse osmosis or as separators in Lithium ion 

batteries [1–4]. To fulfill high demands laid on those products, in recent decades, there have 

been introduced the fabrication process of semi-permeable polymeric membranes from 

semi-crystalline polymers without solvents by the dry method. This fabrication process can be 

divided to the three significant stages: first of all, primary precursor film is produced with 

demand on formation of the row-nucleated lamellar crystalline structure; the second: film is 

annealed to increase a thickness of lamellae and enhance its orientation and uniformity and; 

the third: film stretching at low temperature is imposed to create voids following by stretching 

at high temperature to promote voids to larger pores. After those major steps of the secondary 

processing, the heat setting is usually applied to yield better dimensional stability of produced 

membranes [5]. Preparation of the primary film with suitable morphology structure seems to be 

the key requirement for subsequent successful creation of the pores [6] with good spatial and 

size distribution. For this purpose, the extrusion film casting technology can be used with 

benefit for the fabrication of the primary film with row-nucleated lamellar crystalline structure 

if the suitable processing conditions and spatial process configuration are used. According to 

the past investigations, important parameters are molecular weight and molecular weight 

distribution together with a polymer architecture [7–10], draw ratio and cooling conditions 

together with die and roll temperature [11–14]. Polymer melt is subjected to shear and 

extensional flow in the die and at/behind die lips, respectively, inflicting the enhancement of 

crystallization kinetics, known as a Flow Induced Crystallization, FIC [13, 15–19] due to 

the orientation of macromolecules. Consequently, the entropic increase in melting temperature 

may be encountered [20, 21]. Under such flow conditions, the final polymer morphology can 

be transformed from spherulites to the lamellar or under severe flows to fibrillary structures. 

To ensure that the crystallization is commenced in the drawing distance, thus, the primary film 
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acquire an oriented structure which is a prerequisite for the fabrication of microporous 

membrane [14, 22, 23], the processing condition should be set in that manner, that is high 

cooling rate, low temperature at die or long drawing distance. This is on the first sight in direct 

contrast with conditions for transparent films for packaging applications. Therefore, 

the processing window for fabrication of suitable precursor films for further conversion into 

microporous membranes is tight with a difficult optimization. 

In order to understand the role of stress induced crystallization in this technology, The novel 

viscoelastic film casting model utilizing flow induced crystallization was derived for the first 

time, validated and consequently used for detailed parametric study. Particular attention was 

paid to the role of heat transfer coefficient on the flow induced crystallization, film kinematics, 

dimensions and temperature profile. 
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2 EXTRUSION FILM CASTING MODEL 

In this study, the 1.5D membrane model of extrusion film casting [24] was utilized and 

additionally coupled with the equation of energy and crystallization kinetics to account for 

non-isothermal effects and crystal phase development, respectively. The first component of 

the model is based on two essential hypotheses allowing the problem to be treated as 

a membrane that has one dimension distinctly minor (film thickness) compared to the others, 

hence the total stress in this direction is assumed to be null. Second supporting hypothesis, 

stemming from the work of Narayanaswamy [25], is related to process kinematics that allows 

reducing the dimensionality of the computational task and simultaneously retaining the model 

predicting capability for both, the development of film width and thickness, although 

the model variables are dependent on x only.  

As the constitutive equation combined with the base model, the modified Leonov model 

[26, 27]  was embraced owning to its good capability of describing extensionally-dominated 

flows [28]. The stress and strain stored in the polymer melt is expressed in this model as follows 

 
1

1,c 2,c

W W
2 c c

I I


  

        
 (1) 

where τ  is the stress tensor, and W, the elastic potential, which depends on the invariants I1,c 

and I2,c of the recoverable Finger tensor c ,  

 
 

 
n 1 n 1

1,c 2,cI I3G
W 1 1 1

2 n 1 3 3

         
                           

 (2) 

where G denotes linear Hookean elastic modulus,  and n are numerical parameters. 

Throughout this work, the Mooney potential (i.e. n=0 in Eq. 2) and the following dissipation 

function b proposed in [27], have been employed. 
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  
 

 
1,c

1,c 1,c

1,c

sinh I 31
b I exp I 3

4 I 3 1

                

 (3) 

Here,  and  are adjustable model parameters and λ is melt relaxation time. 

The non-isothermally of the process is covered by energy balance equation 

 
 a c

p p

2HTC T T LX dXdT H

dx C m C dx

 
   (4) 

where, the L(x) is film half-width, HTC is a constant heat transfer coefficient, Cp is specific heat 

capacity, m  is mass flow rate in quarter-cross-section, ΔH is latent heat of crystallization, T 

and Ta is melt and ambient air temperature, respectively, and finally Xc(x) stands for content of 

crystallinity in the polymer volume. The development of crystallinity P(t) in the film is given 

by crystallization kinetics [29–31] where the crystallinity content is a function of time, 

temperature and applied rate of cooling. 

     cn

c eq eqX t X X exp P t       (5) 

where Xeq is the equilibrium volume content of crystallinity and nc constant is a constant 

determining a type of crystal growth. Temperature dependence of melt relaxation time λ is 

described by Arrhenius form with the constant activation energy Ea and is given as 

 
a

0

r

E 1 1
exp

R T T

  
     

  
 (6) 

here, R is universal gas constant and Tr is reference melt temperature. Apart from that, 

an increase of the elastic modulus G due to the effect of crystallization is expressed by following 

formula [32] with parameters f, h and m. 

 0 m

c

h
G G 1 f exp

X

  
    

  
 (7) 
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Flow-induced crystallization 

Effect of flow on crystallization is described via molecular strain that increases both growth 

and nucleation rates. In the used formulation [33], melting temperature is continuously modified 

(see Figure 1) according to the current molecular strain as follows 

  0 F 1
m F mq 3 F 4

2

S A1
T (S ) T tanh 1 A S A

2 A

  
     

  
 (8) 

where 0

mqT  and Tm(SF) is equilibrium and quiescent melting temperature, and A1-4 are 

experimentally determined parameters, SF is stretch function expressed here in the following 

form  

 F 1,cS I 3   (9) 

In this proposed formula, the molecular stretch is measured over the first invariant of 

recoverable Finger tensor I1,c. 

Entire set of model equations was numerically solved with appropriate boundary conditions 

using the 4th order Runge-Kutta method and iteratively searched for the value of drawing force, 

F, that satisfies the prescribed draw ratio. Computational scheme was implemented in C++ 

language with GNUPLOT plotting software for external graph generation. Detailed derivation 

of the model equation can be found in our previous works [34, 35]. 
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3 RESULTS AND DISCUSSION 

3.1  Model validation 

 Utilized model has been validated by using experimental data taken from [21], which 

were collected during film casting of linear isotactic polypropylene, iPP T30G (for its basic 

characteristics see Table 1), under extremely high cooling rates of 86°C/s. The processing 

conditions were the following: A=0.4, DR=25.75, TDIE=220°C, for more details see Table 2. 

The relaxation spectrum for this material is provided in [36], the Newtonian viscosity, 0, at 

220°C is equal to 7,402 Pa·s and the flow activation energy, Ea, is 40.092 kJ·mol-1. In order to 

simplify the simulations, average relaxation time, =0.1 s, instead of full relaxation spectrum, 

was used in this work. Average modulus G for the polymer melt without any crystalline phase 

was calculated to satisfy the following basic relation: 0=G·. Modified Leonov model 

parameters ,  and  were adjusted according to Table 3 in order to impose extensional shear 

thinning flow behavior, which is typical behavior of linear polymer melts. Deborah number at 

the die exit was calculated to 10-3 for given material and processing conditions, thus according 

to our previous study [37], the die exit stress state was set to 2 1N / N 0.2   following 

the results from [38]. Crystallization kinetics parameters for the utilized polymer [20], 

including the parameters of Eq. 7 describing the effect of crystallinity on the modulus, as well 

as parameters of Eq. 8 describing evolution of melting temperature with the molecular stretch 

were taken from [39] and [33] and they are summarized in Tables 4 and 5, respectively. The 

heat transfer coefficient, the only unknown parameter of the utilized model appearing in Eq. 4, 

was adjusted be HTC=31 J·s-1·K-1·m-2, which allows reasonable description of experimentally 

determined temperature profile for given processing conditions (see Figure 2).  

Comparison between experimental data and full model predictions for film temperature and 

crystallinity (as the function of drawing distance) is provided in Figure 2. Here, two cases are 

visualized: the first considers Flow Induced Crystallization (FIC) but the second do not 
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(No FIC).  It can be seen that utilization of FIC is necessary to correctly describe these two 

experimentally determined variables. Interestingly, FIC seems to have only very small effect 

on the neck-in phenomenon and axial velocity profile (at least for the investigated processing 

conditions) as it can be seen in Figure 3. On the other hand, if the energy equation (Eq. 4) is 

fully neglected, i.e. the flow is considered to be isothermal, the model predicts nearly linear 

decrease in dimensionless film half-width and convex axial velocity profile, which is not 

realistic [20, 41–43, 45–50]. 

   

3.2 Parametric study 

It has been reported that the heat transfer coefficient is one of the most important major 

parameter, which together with flow induced crystallization, has strong impact on 

the production of porous polypropylene membranes [7, 11, 51–53]. In order to understand its 

effect on the cast film technology, its value has been varied from 0 to 100 J·s-1·K-1·m-2 in full 

model for the same processing conditions, which were used in the validation study. 

As it can be seen from Figure 4, if HTC increases, neck-in decreases (except to the highest 

HTC value, at which neck-in starts to increase), axial velocity profile is changed from 

the convex to the concave shape, see Figure 5, film temperature decreases, see Figure 6, and 

crystallinity increases, see Figure 7. Even if these trends are comparable with those reported in 

our previous work [34], in which FIC was neglected, there are some differences. Firstly, 

inclusion of FIC in the model allows to predict realistic plateau in the temperature profile, which 

corresponds with the location of exothermal crystallization (see Figure 2a and compare 

Figure 6. with Figure 11, bottom-left, from [34]). Secondly, utilization of FIC in the film casting 

model predicts monotonic increase in the film crystallinity for the increased HTC, which seems 

to be more realistic in comparison with the non-monotonic trend predicted by the cast film 

model neglecting FIC (compare Figure 7 with Figure 11, bottom-right, in [34]).  
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The effect of HTC on the linear iPP melting temperature plotted as the function of drawing 

distance is provided in Figure 8 for the given processing conditions. It can be seen that increase 

in HTC increases melt temperature of the given PP melt, especially, if its value becomes higher 

than about 12 J·s-1·K-1·m-2. Such melt temperature change becomes more abrupt and it occurs 

closer to the die exit, if the HTC increases. 
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4 CONCLUSION 

 

In this work, 1.5D film casting membrane model proposed by Silagy at [24] was generalized 

considering single-mode modified Leonov model as the viscoelastic constitutive equation, 

energy equation, constant heat transfer coefficient, advanced crystallization kinetics taking into 

account the role of temperature, cooling rate and molecular stretch, crystalline phase dependent 

modulus and temperature dependent relaxation time. The model has been successfully validated 

for the linear isotactic polypropylene by using suitable experimental data taken from the open 

literature.  

It has been found that for the given processing conditions, utilization of flow induced 

crystallization significantly improves predictions for the film temperature and crystallinity 

whereas its effect on the neck-in phenomenon and axial velocity profile is predicted to be small. 

Consequent parametric study has revealed that inclusion of FIC in the model allows to 

predict realistic plateau in the temperature profile as well as monotonic increase in the film 

crystallinity for the increased HTC (which seems to be more realistic on this case than 

non-monotonic trends predicted by the model neglecting FIC). It was also shown that there is 

some threshold HTC value (about 12 J·s-1·K-1·m-2 for the studied iPP and given processing 

conditions), above which melting temperature is changed considerably, abruptly and more 

closely to the extrusion die due to FIC.  
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5 LIST OF SYMBOLS 

Latin Symbols Meaning Unit 

1 2 3 4A , A , A , A  Fitting parameters of FIC model 1 

b  Dissipation term s-1 

c  Recoverable Finger tensor 1 

1
c


 Inverse recoverable Finger tensor 1 

0

c  
Jaumann (corotational) time derivative of the 

recoverable Finger strain tensor 
s-1 

pC  Specific heat capacity of polymer J·kg-1·K-1 

De  Deborah number, 1

0 0De u X   1 

DR  Draw ratio, 1

0DR u(X)u  1 

aE  Flow activation energy J·mol-1 

0e  
Die half-gap (half-thickness of the film at the die 

exit) 
m 

F  Take-up force (stretching force) N 

, mf , h  
Parameters in function describing the effect of 

crystallinity on elastic modulus 
1 

G  Linear Hookean elastic modulus Pa 

0G  Linear Hookean elastic modulus at the die exit Pa 

HTC  Heat transfer coefficient J·s-1·K-1·m-2 

1,cI  First invariant of recoverable Finger tensor 1 

2,cI  Second invariant of recoverable Finger tensor 1 

0L  
Half-width of the die (half-width of the film at the 

die exit) 
m 
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L  
Dimensionless half-width of the film at any x 

location 
1 

MFR , m  Mass flow rate kg·h-1 

nM  Number average molar mass g·mol-1 

wM  Mass average molar mass g·mol-1 

NI  Neck-in,  0NI L L X   mm 

1N  First normal stress difference Pa 

2N  Second normal stress difference Pa 

n  Non-linear Leonov model parameter 1 

cn  Type of crystallization growth 1 

 P t  Function of non-linear crystallinity evolution 1 

R  Gas constant J·K-1·mol-1 

FS  Molecular stress function of FIC model °C 

T  Melt temperature °C 

cT  Melt temperature at the die °C 

DIET  Melt temperature at the die °C 

mT  Melting temperature of polymer °C 

0

mqT  Flow induced equilibrium melting temperature °C 

rT  Reference temperature in the Arrhenius law °C 

*T  Rate of cooling °C·s-1 

u(X)  Chill roll speed m·s-1 

0u  Axial velocity component at the die exit m·s-1 

W  Elastic potential Pa 

X  Take-up length (stretching distance, air gap) m 
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cX  Crystallinity content in the polymer volume 1 

eqX  
Equilibrium level of crystallinity in the polymer 

volume 
1 

FLX  
Experimentally measured film freeze line within air 

gap 
m 

x  Position in axial x-direction m 

x  Dimensionless position in axial x-direction 1 

x, y,z  
Spatial coordinates in axial, transverse and thickness 

direction, respectively 
1 

cdX

dx
 

Derivative of crystallinity with respect to 

dimensionless x  position 
1 

dT

dx
 

Derivative of temperature with respect to 

dimensionless x  position 
°C 

   

Greek Symbols Meaning Unit 

  Non-linear Leonov model parameter 1 

H  Crystallization latent heat kJ·kg-1 

0  Newtonian viscosity Pa·s 

  Melt relaxation time s 

0  Melt relaxation time at the die exit s 

cX  Effect of crystallinity on elastic modulus function 1 

  Non-linear Leonov model parameter 1 

  Non-linear Leonov model parameter 1 

P  Polymer density kg·m-3 

  Extra stress tensor Pa 
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7 TABLES 

Table 1.  Basic characteristics for iPP T30G [21, 39, 40]. 

 

Mn 

(g·mol-1) 

Mw 

(g·mol-1) 

PDI 

(1) 

η0
### 

at 220°C 

(Pa·s) 

Tacticity 

(mmmm) 

Ea 

(kJ·mol-1) 

Cp
#

 

(J·Kg-1·K-1) 

ρP
#

 

(kg·m-3) 

ΔH## 

(kJ·kg-1) 

75,000 481,000 6.4 7,402 87.6% 40.092 2,200 920 209 

# – Value taken from [41] as typical value for polyolefins. 

## – Value of crystallization latent heat taken from [44] as value for fully crystalline PP. 

### – Acquired by data digitalization technique from Figure 1 in [39]. 

 

Table 2. Summarization of processing conditions and relevant experimental data for iPP T30G 

taken from [21]. 

 

u0 

(10-3 m·s-1) 

u(X) 

(10-3 m·s-1) 

X 

(m) 

XFL 

(m) 

TDIE  

(°C) 

Tc 

(°C) 

*
T  

(°C·s-1) 

2L0 

(m) 

2e0  

(10-4 m) 

DR  

(1) 

4 103 0.4 0.06 220 100 86 0.2 3 25.75 

Ambient temperature, Ta, was kept at 23°C for all numerical studies. 

 

Table 3.  Modified Leonov model parameters for iPP T30G at Tr=220°C. 

λ0 (s) G0 (Pa) ξ (1) ν (1) β (1) 

0.1 74,020 0 0.5 0.5 

 

Table 4.  Parameters used in Eq. 7 describing effect of crystallinity on elastic modulus G 

taken from [39]. 

 

f (1) h (1) m (1) 

2,000 0.2 1.2 

 

Table 5.  Parameters used in Eq. 8. describing the evolution of 0

mT  were taken from [33]. 

 

A1 (1) A2 (1) A3 (1) A4 (1) 
0

mq
T  (°C) 

1.15 0.26 1 4.92 190 
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8 FIGURES 

 
 

 

Figure 1. Schematic illustration of extrusion film casting process. 
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Figure 2. Comparison between non-isothermal film casting model predictions with and without 

consideration of Flow Induced Crystallization, FIC, and experimental data taken from [21], 

HTC=31 J·s-1·K-1·m-2. (a) Temperature profile, (b) Crystallinity profile. 

2a) 

2b) 
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Figure 3. Comparison between isothermal and non-isothermal film casting model predictions 

with and without consideration of Flow Induced Crystallization, FIC, for the reference 

processing conditions (HTC=31 J·s-1·K-1·m-2). (a) Dimensionless film half-width profile, 

(b) Dimensionless axial velocity profile. 

3a) 

3b) 
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Figure 4. Predicted effect of HTC on the dimensionless film half-width for the reference 

processing conditions considering the non-isothermal model with flow induced crystallization. 
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Figure 5. Predicted effect of HTC on the dimensionless axial velocity for the reference 

processing conditions considering the non-isothermal model with flow induced crystallization. 
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Figure 6. Predicted effect of HTC on the film temperature for the reference processing 

conditions considering the non-isothermal model with flow induced crystallization. 
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Figure 7. Predicted effect of HTC on the film crystallinity for the reference processing 

conditions considering the non-isothermal model with flow induced crystallization. 
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Figure 8. Predicted effect of HTC on the melting temperature of linear iPP for the reference 

processing conditions considering the non-isothermal model with flow induced crystallization. 
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