

Tomas Bata University in Zlín
Faculty of Applied Informatics

Ing. Zuzana Oplatková

Doctoral Thesis
Metaevolution – Synthesis of Evolutionary

Algorithms by means of Symbolic Regression

Study-branch: Technical Cybernetics
Supervisor: assoc. prof. Ivan Zelinka Zlín, Czech Republic, 2007

Acknowledgements

I would like to express my warm thanks to:

 my supervisor, assoc. prof. Ivan Zelinka, for his support and
invaluable discussions during my study and research on this thesis,

 MSc. Donald Davendra who revised the English in this dissertation,
 Radek Bernátík for his love which helps me a lot,
 colleagues and friends, mainly František Můčka who disscussed

with me for long hours on different topics concerned to this thesis,
 and my parents who supported me during my studies

...dedicated to hurried time...
…to catch the eyewink in our lives as the global extreme of fast world...

RESUMÉ
Toto pojednání je zaměřeno na vysvětlení, jak může být Analytické

programování použito pro vytvoření nových optimalizačních algoritmů,
pravděpodobně evolučního charakteru. Evoluční algoritmy jsou nástrojem pro
optimalizaci složitých úloh. Jedním z cílů práce je ukázat, že je možné
syntetizovat účinný algoritmus, který bude založený na evolučních principech.
Toto všechno se skrývá pod pojmem metaevoluce, jak ji chápeme z našeho
pohledu. Metaevoluce podle předchozích přístupů znamená hledání nejlepších
algoritmů, jejich operátorů a jejich nastavení pro daný problém. Prakticky to
znamená, že nějaký algoritmus ladí jiný algoritmus pro nejlepší chování na
daném problému. Náš přístup je jiný, nehledáme pouze nastavení algoritmu,
ale používáme metaevoluci k vytvoření kompletně nového algoritmu.

Nejprve jsou popsány současné metody pro regresi – Genetické
programování, Gramatická evoluce a Analytické programování. Poslední
z nich je použito pro simulace v této studii. V další sekci jsou popsány
evoluční algoritmy, které byly použity pro simulace a také k porovnání jejich
robustnosti.

Následující část popisuje simulační experimenty, které byly provedeny
Analytickým programováním. Nejprve jsou zachyceny simulace pro fitování
dat, což znamená použití regrese k nalezení vhodného matematického zápisu.
Tato formule, která je vystavěná z jednoduchých funkcí jako je plus, minus
nebo proměnné x či konstanty, by měly proložit data co nejlépe. Simulace
potvrdily, že AP je schopné pracovat s tímto typem problémů, dokonce
s menším počtem ohodnocení účelové funkce než GP. Pro ukázku, že fitování
dat funguje, byly provedené 4 studie - Quintic, Sextic, Three Sine and Four
Sine problém.

Druhou úlohou bylo navržení elektronických obvodů. Cílem bylo najít
zapojení obvodu funkcí odpovídající dané pravdivostní tabulce.
Z jednoduchých funkcí jako je And, Nand, Or a vstupů byly vytvořeny
konečné výrazy k – symetrického a k – sudého problému. Hodnoty k byly
postupně nastaveny na hodnoty 3 až 6 pro oba problémy.

Poslední úlohou, která měla prokázat, že AP je schopné pracovat i s
lingvistickými výrazy jako jsou např. příkazy pro robota, bylo nastavení
optimální trajektorie pro robota. Na definované cestě bylo rozmístěno jídlo a

také překážky. Umělý mravenec, který byl navržený v původní úloze Kozou,
měl sníst všechno jídlo na této trase. Mravenec musel také překonat umístěné
překážky, které v tomto případě byly políčka na cestě, které neobsahovaly
jídlo.

Tyto předpoklady vedly k hypotéze, že AP je schopno vytvořit i nový
optimalizační algoritmus, pravděpodobně evolučního charakteru. Sekce 6
popisuje vývoj od první studie tohoto druhu až po simulace s více operátory a
ve vyšších dimenzích. Na začátku jsme si vybrali Diferenciální evoluci (DE),
ze které jsme separovali její operátory na samostatně pracující moduly. Tyto
operátory byly nastaveny jako jednoduché základní funkce pro AP. Během
simulace byly vyšlechtěna jak úspěšná včetně originální DE, tak i neúspěšná
řešení.

Následující krok bylo použití více operatorů z dalších evolučních a
stochastických algoritmů jako je SamoOrganizujícíc se Migrační Algoritmus
(SOMA), Horolezecký algoritmus a Simulované žíhání. V tomto případě jsme
také použili vylepšenou verzi účelové funkce. S ohledem na řád jednotlivých
hodnot z testovacích funkcí jsme změnili výpočet hodnoty na rozdíl mezi
nalezeným a globálním extrémem. To také umožnilo snadnější penalizaci
týkajícíc se počtu ohodnocení účelové funkce.

Simulace v této sekci byly provedeny v 2 dimensionálním prostoru. To
vedlo k třetímu kroku a to použití benchmark funkcí ve vyšších dimenzích
jako kritérium v AP. Obdržené výsledky z vícerozměrových testovacích
funkcí - 4 nalezené algoritmy – byly aplikovány na 16 testovacích funkcí ve 2,
20 a 100 dimenzionálním prostoru. Celkem bylo provedeno 192 simulací,
z nichž každá byla 100krát zopakována. Výsledky jsou presentovány formou
tabulek a grafů v příloze.

Z výsledků lze usoudit, že nalezené algoritmy jsou schopné optimalizovat
multimodální funkce. Není možno říci, který z nich zvítězil, jednak kvůli ne
zcela totožný počtům ohodnocení účelové funkce, ale také proto, že žadný
algoritmus nevyhrál ve všech testovacích funkcích. Soutěžili dokonce i
v různých dimenzích v rámci jedné funkce.

Budoucí výzkum je otevřený v oblasti přidávání operátorů, ladění
parametrů nalezených algoritmů nebo syntéza nového evolučního operátoru.

Klíčová slova: symbolická regrese, Analytické Programování (AP),
evoluční algoritmy, nové evoluční algoritmy

ABSTRACT
This thesis is aimed at the explanation as to how Analytic Programming

could be used for the creation of new optimizing algorithms, probably of
evolutionary character. Evolutionary algorithms are tools for the optimization
of difficult tasks. The principle of this thesis is to show that it might be
possible to synthesize a powerful algorithm based on evolutionary ideas. The
name of this thesis – metaevolution – covers all these ideas. Metaevolution is,
according to previous approaches, determining the optimal evolutionary
algorithm, best types of evolutionary operator and their parameter setting for a
given problem. It means basically, that one evolutionary algorithm tunes
another one. But this approach is novel. We use metaevolution for creating a
new algorithm completely, not only for setting of its parameters.

Firstly, tools for regression are described – Genetic Programming,
Grammatical Evolution and Analytic Programming (AP); the last one is used
in this study. Other tools, which are seen here, depict evolutionary algorithms
which were used for simulations purposes in order to also to compare their
robustness.

The following part describes projects which were conducted by Analytic
Programming. Firstly, simulations of fitting measured data are mentioned,
which implies the use of regression to finding a suitable mathematical
formula. This complex formula, based on simple functions like plus, minus or
variables “x” and constants, should fit the data as closely as possible. The
simulations proved that AP is able to perform such kinds of computations even
in a smaller number of cost function evaluations compared to GP (four
problems were carried out – Quintic, Sextic, Three Sine and Four Sine
problem - to show that this type of regression works).

The second task was to design electronic circuits. The aim was to find a
configuration of circuits according to the truth table. Whole expression of k-
symmetry and even-k-parity problems were created from simple functions like
And, Nand, Or and inputs. Values 3 to 6 for both types of problems were set
up for k.

The last task, which proved that AP is able to work also with linguistic
terms like commands for robot, was setting of optimal trajectory for robot. In
the defined problem trail pieces of food were placed including some obstacles.

The artificial ant, originally defined by Koza, should eat all the food on such a
trail while overcoming all obstacles.

These presumptions led to the hypothesis that a new algorithm of
evolutionary character can be created by Analytic Programming. Section 6
describes the progress from the first study of the creation of a new
evolutionary algorithm to the simulations with more operators and higher
dimensional systems. At the onset Differential Evolution (DE) was taken and
its operators were separated into modules which are able to work
independently. These operators were set up as simple functions for successful
evaluations of AP. During the run non successful solutions as well as the
original Differential Evolution and other successful solutions were found.

The next step continued with more operators from other evolutionary and
stochastic algorithms such as Self-Organizing Migrating Algorithm, Hill
Climbing and Simulated Annealing. In this case also a new design of cost
function was. With respect to the order of obtained cost values, the
measurement was changed to minimize the difference between found extreme
and the global one. This also affords to apply penalization concerned to cost
function evaluations. Simulations in this section were performed in 2
dimensional space. This led to the third step, to use high dimensional
benchmark functions as criterion in AP. The obtained results from higher
dimensional test functions were then applied on 16 benchmark function in 2,
20 and 100 dimensional space for 4 found algorithms. Altogether 192
simulations were carried out in 100 times repetition, it means nearly 4
milliards of cost function evaluations. Results are depicted in tables and
graphs in the Appendix.

 From results obtained, it can be stated that found algorithms are able to
optimize multimodal functions. However, it is not possible to say which one
was better because each won in some cases. They compete even inside one
benchmark function in different dimensions.

Future research is open to add more operators, to tune parameters of found
algorithms or to try to synthesize a new evolutionary operator itself.

Keywords: Symbolic Regression, Analytic Programming, evolutionary

algorithms, new evolutionary algorithms

- 8 -

CONTENTS
RESUMÉ... 4
ABSTRACT .. 6
CONTENTS.. 8
LIST OF FIGURES.. 11
LIST OF TABLES.. 12
LIST OF SYMBOLS AND ABBREVIATIONS.. 13
1. INTRODUCTION AND STATE OF ART... 18
2. DISSERTATION GOALS ... 21
THEORETICAL FRAMEWORK.. 22
3. SYMBOLIC REGRESSION ... 23

3.1. GENETIC PROGRAMMING ... 23
3.2. GRAMMATICAL EVOLUTION .. 25
3.3. ANALYTIC PROGRAMMING .. 29

3.3.1. Description... 29
3.3.2. Versions of AP.. 33

3.4. COMPARISON ... 34
3.5. OTHER POSSIBLE APPROACHES... 34

4. OPTIMIZATION ALGORITHMS - EVOLUTIONARY ALGORITHMS........ 36
4.1. DETERMINISTIC ALGORITHM – HILL CLIMBING ... 37
4.2. STOCHASTIC ALGORITHM - SIMULATED ANNEALING... 37
4.3. GENETIC ALGORITHMS .. 38

4.3.1. Coding and fitness function.. 39
4.3.2. Reproduction.. 39

4.4. SELF-ORGANIZING MIGRATING ALGORITHM (SOMA) .. 41
4.5. DIFFERENTIAL EVOLUTION (DE) ... 44

PRACTICAL PART .. 46
5. EXPERIMENTS PERFORMED BY ANALYTIC PROGRAMMING 47

5.1. DATA APPROXIMATION .. 47
5.2. LOGICAL CIRCUITS DESIGN... 49
5.3. OPTIMAL SETTING OF ROBOT TRAJECTORY .. 53

5.3.1. Set of functions... 54
5.3.2. Results .. 55
5.3.3. Output from the simulations... 56

- 9 -

5.4. LOCAL CONCLUSION AND DISCUSSION ... 56
6. CREATION OF EVOLUTIONARY ALGORITHMS - PROGRESS................. 58

6.1. FIRST EXPERIMENTS ... 58
6.1.1. General Function Set ... 59
6.1.2. Cost Function... 60
6.1.3. Results of the preliminary study... 61

6.2. DESIGN OF NEW COST FUNCTION.. 64
6.2.1. New operators added and renamed ... 64
6.2.2. Design of cost function... 67
6.2.3. Results .. 68

6.3. HIGHER DIMENSIONAL PROBLEMS.. 72
6.3.1. Results .. 76
6.3.2. Comments to behaviour of new algorithms itself ... 77
6.3.3. Possible approach to giving a name to new algorithms 88

CONCLUSIONS AND DISCUSSIONS.. 89
REFERENCES ... 93
7. APPENDIX - TEST FUNCTIONS.. 98

7.1. SPHERE MODEL, 1ST DE JONG‘S FUNCTION – 2D... 98
7.2. SPHERE MODEL, 1ST DE JONG‘S FUNCTION – 20D... 100
7.3. SPHERE MODEL, 1ST DE JONG‘S FUNCTION – 100D... 102
7.4. ROSENBROCK‘S SADDLE, 2ND DE JONG‘S FUNCTION – 2D 104
7.5. ROSENBROCK‘S SADDLE, 2ND DE JONG‘S FUNCTION – 20D 106
7.6. ROSENBROCK‘S SADDLE, 2ND DE JONG‘S FUNCTION – 100D 108
7.7. 3RD DE JONG‘S FUNCTION – 2D... 110
7.8. 3RD DE JONG‘S FUNCTION – 20D... 112
7.9. 3RD DE JONG‘S FUNCTION – 100D... 114
7.10. 4TH DE JONG‘S FUNCTION – 2D... 116
7.11. 4TH DE JONG‘S FUNCTION – 20D... 118
7.12. 4TH DE JONG‘S FUNCTION – 100D... 120
7.13. RASTRIGIN’S FUNCTION – 2D... 122
7.14. RASTRIGIN’S FUNCTION – 20D... 124
7.15. RASTRIGIN’S FUNCTION – 100D... 126
7.16. SCHWEFEL’S FUNCTION – 2D... 128
7.17. SCHWEFEL’S FUNCTION – 20D... 130
7.18. SCHWEFEL’S FUNCTION – 100D... 132

- 10 -

7.19. GRIEWANGK’S FUNCTION – 2D.. 134
7.20. GRIEWANGK’S FUNCTION – 20D.. 136
7.21. GRIEWANGK’S FUNCTION – 100D.. 138
7.22. SINE ENVELOPE SINE WAVE FUNCTION – 2D .. 140
7.23. SINE ENVELOPE SINE WAVE FUNCTION – 20D .. 142
7.24. SINE ENVELOPE SINE WAVE FUNCTION – 100D .. 144
7.25. STRETCHED V SINE WAVE FUNCTION (ACKLEY) – 2D 146
7.26. STRETCHED V SINE WAVE FUNCTION (ACKLEY) – 20D 148
7.27. STRETCHED V SINE WAVE FUNCTION (ACKLEY) – 100D 150
7.28. TEST FUNCTION (ACKLEY) – 2D .. 152
7.29. TEST FUNCTION (ACKLEY) – 20D .. 154
7.30. TEST FUNCTION (ACKLEY) – 100D .. 156
7.31. ACKLEY‘S FUNCTION – 2D... 158
7.32. ACKLEY‘S FUNCTION – 20D... 160
7.33. ACKLEY‘S FUNCTION – 100D... 162
7.34. EGG HOLDER – 2D... 164
7.35. EGG HOLDER – 20D... 166
7.36. EGG HOLDER – 100D... 168
7.37. RANA’S FUNCTION – 2D... 170
7.38. RANA’S FUNCTION – 20D... 172
7.39. RANA’S FUNCTION – 100D... 174
7.40. PATHOLOGICAL TEST FUNCTION – 2D.. 176
7.41. PATHOLOGICAL TEST FUNCTION – 20D.. 178
7.42. PATHOLOGICAL TEST FUNCTION – 100D.. 180
7.43. MICHALEWICZ‘S FUNCTION – 2D... 182
7.44. MICHALEWICZ‘S FUNCTION – 20D... 184
7.45. MICHALEWICZ‘S FUNCTION – 100D... 186
7.46. MASTER’S COSINE WAVE FUNCTION – 2D.. 188
7.47. MASTER’S COSINE WAVE FUNCTION – 20D.. 190
7.48. MASTER’S COSINE WAVE FUNCTION – 100D.. 192

LIST OF AUTHOR’S PUBLICATION ACTIVITES .. 194
CURRICULUM VITAE .. 197

- 11 -

LIST OF FIGURES
Fig. 3.1: Parse tree ... 24
Fig. 3.2: Mutation in Genetic Programming .. 24
Fig. 3.3: Crossover in Genetic Programming... 25
Fig. 3.4: An example of an individual for GE... 27
Fig. 3.5: Discrete set handling.. 30
Fig. 3.6: Main principles of AP .. 30
Fig. 3.7: Example of set of General Functional Set and its subsets.. 31
Fig. 4.1: Division of evolutionary algorithms – taken from [1].. 36
Fig. 4.2: Scheme of RouletteWheel on unit circle ... 40
Fig. 4.3: Scheme of unit line ... 40
Fig. 4.4: Scheme of 1-point crossover... 41
Fig. 4.5: Scheme of 2-point crossover... 41
Fig. 4.6: Scheme of 1-bit mutation.. 41
Fig. 4.7: SOMA example... 43
Fig. 4.8: DE example .. 45
Fig. 5.1: Four problems – a) Quintic, b) Sextic polynomial in the interval [-1.0, +1.0], c)
Three Sine, d) Four Sine problem in the interval [-π, +π]... 48
Fig. 5.2: Examples of results – a) Quintic, b) Sextic polynomial, c) Three Sine, d) Four Sine
problem for SOMA algorithm .. 48
Fig. 5.3: Santa Fe Trail for artificial ant .. 53
Fig. 6.1: DeJong function – unimodal (left – 2 arguments and right – 1 argument used)...... 60
Fig. 6.2: Schwefel function – multimodal (left – 2 arguments and right – 1 argument used) . 60
Fig. 6.3: 100 simulations for 1st De Jong a) original DE, b) new algorithm 62
Fig. 6.4: History of best individual for Schwefel a) original DE and b) new algorithm......... 63
Fig. 6.5: 100times repeated for SOMA – a) 1st De Jong, b) Schwefel..................................... 69
Fig. 6.6: 100times repeated for new algorithm - a) 1st De Jong, b) Schwefel......................... 71

- 12 -

LIST OF TABLES
Table 3.1: The number of choices available from each production rule 27
Table 5.1: Overview of results for approximation data ... 49
Table 5.2: Truth table of 3- parity problem ... 50
Table 5.3: Truth table of 3- symmetry problem.. 50
Table 5.4: Number of steps for artificial ant.. 55
Table 6.1: Comparison of results of original DE and generated algorithm 64
Table 6.2: Values of extremes found by DE and SOMA... 70
Table 6.3: Values of extremes for 1st De Jong and Schwefel found by new generated
algorithms .. 72
Table 6.4: Settings for SOMA operators.. 73
Table 6.5: Settings for DE operators ... 73
Table 6.6: Settings for HC ... 73
Table 6.7: Settings for SA .. 74
Table 6.8: Settings for SOMA for AP... 74
Table 6.9: 1st De Jong’s function ... 78
Table 6.10: 2nd De Jong’s function .. 78
Table 6.11: 3rd De Jong’s function... 79
Table 6.12: 4th De Jong’s function... 79
Table 6.13: Rastrigin’s function .. 80
Table 6.14: Schwefel’s function ... 80
Table 6.15: Griewangk’s function.. 81
Table 6.16: Sine Envelope Sine Wave function.. 81
Table 6.17: Stretched V sine wave function - Ackley ... 82
Table 6.18: Ackley test function ... 82
Table 6.19: Ackley function.. 83
Table 6.20: Egg Holder function ... 83
Table 6.21: Rana‘s function... 84
Table 6.22: Pathological function.. 84
Table 6.23: Michalewicz‘s function ... 85
Table 6.24: Master’s cosine wave function.. 85
Table 6.25: Winner for each benchmark function.. 86
Table 6.26: Cost function evaluations for performed algorithms .. 87

- 13 -

LIST OF SYMBOLS AND ABBREVIATIONS

!

xi, j
ML

 j – parameter of i – individual in
migration loop ML

!

xL, j
ML j – parameter of Leader in migration

loop ML

!

xi, j ,START
ML Start position of j – parameter of i –

individual in migration loop ML

AllToAll Strategy of SOMA, all individual search
in the direction to all individuals

AllToAllAdaptive Strategy of SOMA, all individuals
search in the direction to all by means of
adaptive way

AllToOne Strategy of SOMA, all individuals
search in the direction to Leader

AllToOneRand Strategy of SOMA, all individuals
search in the direction to one randomly
selected

AP Analytic Programming

CF Cost Function

CFE Cost Function Evaluations

CompleteHC Operator of HillClimbing algorithm

CompleteSA Operator of Simulated Annealing

CR Control parameter of DE, crossover
constant

- 14 -

CrossDEBin Crossover operator of Differential
Evolution – Bin version

CrossDEExp Crossover operator of Differential
Evolution – Exp version

CrossoverDE Crossover operator of Differential
Evolution – DERand1Bin, previous name

CV Cost value

DE Differential Evolution

Dim Dimensionality of given problem
(number of arguments)

EA Evolution Algorithms

F Control parameter of DE, mutable
constant

F(ind) Fitness value in GA

fmax Maximum value of cost function

fmin Minimum value of cost function

GA Genetic Algorithms

GE Grammatical Evolution

Generations Stopping parameter of DE and GA,
number of loops in all evolution

GFS General Functional Space

GFS0arg Functions with 0 arguments in GFS, i.e.
constants and variables

- 15 -

GFS1arg Functions with 1 argument in GFS (e.g.
Sin, Cos, Tan..)

GFS2arg Functions with 2 arguments in GFS
(e.g. +,-,/….)

GFS3arg Functions with 3 arguments in GFS

GFSAll Set of all functions in general functional
space

GP Genetic Programming

HC Hill Climbing

Leader Individual with minimal cost value in
migration loop in SOMA

Migrations Stopping parameter of SOMA, number
of migration loops

MinDiv Stopping parameter of SOMA, minimal
accepted error between the best and worst
individual in population

MutateDEBest1 Mutation operator of Differential
Evolution – DE Best1Bin

MutateDEBest2 Mutation operator of Differential
Evolution – DE Best2Bin

MutateDECurrentToBest Mutation operator of Differential
Evolution – DECurrentToBestBin

MutateDERand1 Mutation operator of Differential
Evolution – DERand1Bin

MutateDERand2 Mutation operator of Differential

- 16 -

Evolution – DE Rand2Bin

MutationDE Mutation operator of Differential
Evolution – DERand1Bin, previous name

NP, NPIIII Number of individuals in population

PathLength Control parameter of SOMA; it
determines the stopping position of the
movement of an individual

PopSize, PopSizeIIII Number of individuals in population

Population Matrix NP x number of arguments of an
individual

PRT, PRTIIII Control parameter of SOMA; perturbed
vector PRTVector is generated according
to it. It has an interaction with the
movement of an individual.

PRTVectorj Vector of zeros and ones, it interacts
with the movement of an individual

SA Simulated Annealing

SelectDE Selection operator of Differential
Evolution

SelectHC Selection operator of HillClimbing –
random point in the Cost Function

SelectionDE Selection operator of Differential
Evolution, previous name

SelectLeaderSOMA, Selection operator of SOMA – the best
individual in the population

- 17 -

SelectSOMARandLeader Selection operator of SOMA – random
individual in the population

SOMA Self-Organizing Migrating Algorithm

SOMAATORandWithoutPRT SOMAATORand version operator,
perturbation not included

SOMAATORandWithPRT SOMAATORand version operator
included perturbation

SOMAATOWithoutPRT SOMAATO version operator,
perturbation not included

SOMAATOWithPRT SOMAATO version operator included
perturbation

Specimen Individual with definitions of
parameters (type – integer, real.., interval)

Step Control parameter of SOMA, length of
step of an individual during search

t Parameter in SOMA – through steps

- 18 -

1. INTRODUCTION AND STATE OF ART

Optimization is one of these words which is used almost every day in

different fields of human activities. Everybody wants to maximize profit and
minimize cost. This means optimizing in every task of industry, transportation,
medicine, everywhere. For these purposes, we need to have suitable tools
which are able to solve very difficult and complicated problems. As previous
years proved, use of artificial intelligence and soft computing contribute to
improvements in a lot of activities. One of such tools of soft computing are
evolutionary algorithms [1].

Evolutionary algorithms are a group of algorithms which use their special
operators as mutation, crossover and others to find an ideal solution. Possible
candidates are defined by a cost function which arguments are values of each
solution. The best one is in the global extreme – maximum or minimum [1],
[2].

These evolutionary algorithms have been known for decades and live
through the advancement from the weaker ones to more robust ones which are
used with success in a lot of tasks nowadays. Since their first appearance there
is quite long queue of representatives: Genetic Algorithms [3], Differential
Evolution [4], Self-Organizing Migrating Algorithm [5], Particle Swarm
Intelligence [6], Ant Colony Optimization [7], Artificial Immune system [8].
In optimization, algorithms belongs also to some stochastic and deterministic
ones: Hill Climbing [9], Simulated Annealing [10], Monte Carlo [2] and a lot
of others or their mutations [11].

These techniques promise fast optimization compared to classical
mathematical approach. On the other hand, also between these optimization
techniques is possible to find better and worse. Their behaviour were
described in a lot of references. And the research in this area is still full of
white places. There is wide field of possible applications as tuning of
parameters, making of comparisons, trying to find new ones somehow.

There exist special tools which are connected with evolutionary algorithms
and are able to work with symbolic regression. Nowadays, mainly three are
known for that – Genetic Programming [12] - [14], Grammatical Evolution
[15] - [17] and superstructure of evolutionary algorithms – Analytic

- 19 -

Programming [18] - [26]. These techniques can produce a complex formula
from basic functions according to required behaviour of function in the case of
mathematical data set, of an electronic circuit, trajectory of robots, etc.

Also, some other approaches to the field of symbolic regression can be
found – either based only on evolutionary techniques or hybrid ones.
Interesting investigations using symbolic regression were showed by Johnson
[27] working on Artificial Immune Systems and Salustowicz in Probabilistic
Incremental Program Evolution (PIPE) [28] which generates programs from
an adaptive probability distribution over all possible programs. To
Grammatical Evolution foreruns GADS which solves the approach to
grammar [29], [30]. Also from evolutionary algorithm artificial immune
systems evolved the artificial immune system programming for symbolic
regression [31]. Approaches which differ in representation and grammar are
described in gene expression programming [32], multiexpression
programming [33], meta-modelling by symbolic regression and pareto
Simulated Annealing [34]. To the group of hybrid approaches, belongs mainly
numerical methods connected with evolutionary systems, e.g. [35].

Then the idea to connect evolutionary algorithms with techniques for
symbolic regression came up. The aim is to try to create new evolutionary
algorithms which will be very robust and will be used for difficult tasks faster
and with higher quality than current algorithms are able to do at present.

This work is divided into five main numbered chapters.
The first chapter gives overview in the research area of symbolic regression

by means of tools of artificial intelligence and evolutionary algorithms
whereas the second chapter formulates the main goals of this dissertation.

The section number three is focused on the theoretical knowledge about the
symbolic regression and its tools and similarly in section four description of
evolutionary algorithms used in the work can be found.

The fifth part of the work shows simulation results which had forerun the
simulations themselves connected to the main topic of the dissertation –
synthesis evolutionary algorithms by means of symbolic regression.

 The sixth part offers the progress from the beginning to the final results of
the creating evolutionary algorithms, the discussion of the obtained results and
conclusion of the achieved goals in this work.

- 20 -

In the final part can be found the discussions and conclusions of achieved
goals of dissertation and view to the future field in this research.

Tables, figures and equations are numbered recursively within a chapter
and literature is referred to in square brackets.

- 21 -

2. DISSERTATION GOALS
The aim of the work is to apply and verify that it is possible to create new

evolutionary algorithms by means of symbolic regression with a tool of
artificial intelligence – Analytic Programming (AP). Preparation steps were
done with several types of tasks chosen from literature to find out the
performance of AP. After that we were able to run simulations to find new
evolutionary algorithms.

The steps leading to this dissertation could be summarized as follows:
 to prove that Analytic Programming is able to do symbolic

regression,
 to prove that Analytic Programming is also able to work with

linguistic terms not only with numeric values or mathematical
operators,

 to try to create a new optimization algorithm, probably of
evolutionary character, possibly with AP,

 to define several operators of evolutionary algorithms (like
crossover, mutation, perturbation from SOMA, and others) which
will be used as simple functions for AP,

 to define restrictions in Cost Function such as the inclusion of the
number of cost function evaluation into quality of solution,

 to try to create an evolutionary algorithm which will be at least as
robust as some current algorithms are and further to compare its
behaviour with current ones,

 to give comparisons between created and current evolutionary
algorithms

THEORETICAL FRAMEWORK

- 23 -

3. SYMBOLIC REGRESSION
In statistics, regression is a method of curve fitting, i.e. finding a curve

which matches a series of data points and possibly also other constraints. It is
done by means of regression analysis. Two types of regression are used –
linear and nonlinear, which depend on data sets. The final formula, which fits
data as close as possible, is done using classical mathematical and statistical
techniques [36].

Symbolic regression in the context we use, implies to create a final formula
from basic simple functions. This procedure can be used for mathematical and
also for non mathematical fields.

This approach was firstly introduced by John Koza in Genetic
Programming [12] - [14], then in Grammatical Evolution [15] - [17] by Conor
Ryan and also by Ivan Zelinka in Analytic Programming [18] - [25].

3.1. Genetic Programming

Genetic programming was introduced at the end of the 1980’s by John
Koza [12] - [14]. He suggested modification of genetic algorithm and he
named it Genetic Programming. In this concept a new population is bred not in
the normal numerical way but in an analytical way. It means that the solution
of such breeding is not values of parameters but a function itself.

According to genetic algorithms, each value is called gene, similarly to
nature. Genes in GP are not represented by integers or real values but
parameters in chromosome string are functions themselves. In the simplest
version there are variables, constants, basic arithmetical functions and
elementary functions. From this group a function, e.g. x*(1+x) can be made.
This can be sought in a parse tree as seen in Fig. 3.1, where the top is called
the root of the tree.

Interpreting of the parse tree is easy. During the run the function x * (1 + x)
is evaluated through this tree from the bottom to the top.

In GP, operators of crossover and mutation are used as in genetic
algorithms [37] - [39]. But here, whole parts of a tree are changed in the case
of mutation (Fig. 3.2) or crossed (Fig. 3.3).

- 24 -

Fig. 3.1: Parse tree

Fig. 3.2: Mutation in Genetic Programming

Another approach to GP is enforcing dimensional constraints through

formal grammar. It restricts GP search space to dimensionally admissible laws
[40]. Another investigation which adjusts GP to achieve improved predictive
performance and reliability of the induced expressions was presented in [41],
[42].

 *

 x +

 1 x

- 25 -

Fig. 3.3: Crossover in Genetic Programming

3.2. Grammatical Evolution
Grammatical evolution (GE) is another tool for doing symbolic regression

by means of computers. The advantage of this tool, compared to GP, is that
GE can evolve complete programs in an arbitrary programming language [15]

- 26 -

- [17] using a variable – length binary string. It uses Backus Naur Form
grammar definition for mapping process to a program. GE performs the whole
process on a variable – length binary strings. A mapping process is employed
to generate programs in any language by using the binary strings to select
production rules in a Backus Naur Form (BNF) grammar definition. The result
is the construction of a syntactically correct program from a binary string that
can then be evaluated by a fitness function [15].

Variable-length binary string genomes are used with each codon
representing an integer value, where codons are consecutive groups of 8 bits in
order to make the genetic code degenerate. The integer values are used in a
mapping function to select an appropriate production rule from the BNF
definition. The numbers generated always represent one of the rules that can
be used at that time.

Below is an example of BNF definition, where N is a set of nonterminals
and T is set of terminals.
 N ={expr, op, pre_op, var}
 T = {Sin, + , - , / , * , X , 1.0}}

and can be represented as:
A) <expr> : : = <expr> <op> <expr> (0)
 | (<expr> <op> <expr>) (1)
 | <pre-op> (<expr>) (2)
 | <var> (3)

B) <op> : : = + (0)
 | - (1)
 | / (2)
 | * (3)

C) <pre-op> : : = Sin

D) <var> : : = X (0)
 | 1.0 (1)

- 27 -

In Table 3.1, numbers of possibilities for each rule are given. The mapping
starts with reading codons of 8 bits [15] to generate a corresponding integer
value, from which an appropriate production rule is selected by using the
mapping function (3.1).

Table 3.1: The number of choices available from each production rule

Rule type Choices

A 4

B 4

C 1

D 2

 Rule = (Codon integer value)
 MOD
 (Number of choices for the current non-terminal) (3.1)

Fig. 3.4 shows an example of the individual with content of integer values

which were generated from 8 bit binary number (codon).

220 40 16 203 101 53 202 203 102 55 220 202 19 130 37 202 203 32 39 202 203 102

 Fig. 3.4: An example of an individual for GE

The first codon is 220. If we apply eq. (3.1) we obtain value 0. That means
we use rule A with its terminal 0. It represents an inscription A.0. Our program
looks like

<expr><op><expr>

Then we continue with the left-most non-terminal which is <expr>. We

take the second codon from the individual and apply the formula (3.1) again,

- 28 -

i.e. 40 MOD 4. We obtain 0. <expr> is replaced by <expr><op><expr>. The
result is following

<expr><op><expr><op><expr>

The next step is again at the <expr>. For the third time we obtain by

reading codon the rule A.0.

<expr><op><expr><op><expr><op><expr>

Now the left-most <expr> is determined by codon with value 203 which

gives after formula (3.1) rule A.3 which is <var>.

<var><op><expr><op><expr><op><expr>

The next codon will then determine the value of var; there are 2

possibilities. 101 MOD 2 gives then rule D.1 which has value 1.0. Our
expression then results in

1.0 <op><expr><op><expr><op><expr>

Next codon will then determine what <op> will become. We have 53 MOD

4 which is 1 which stands for minus. The next <expr> has to be expanded by
the codon 202 that is 202 MOD 4 = 2. We get following

1.0 - <pre-op>(<expr>)<op><expr><op><expr>

Because <pre-op> has only one possibility we obtain

1.0 – Sin (<expr>)<op><expr><op><expr>

Then we can continue similarly as before until we end with this final
formula.

1.0 – Sin(x)*Sin(x) - Sin(x)*Sin(x)

- 29 -

The program is finished when all non-terminals are replaced by terminals.
If codons are run out earlier then they are used cyclically from the beginning
[15]. The above description is for mapping from codons to final formula in
GE. During evolutionary process mutation and crossover operators are used
like in genetic algorithms.

3.3. Analytic Programming

3.3.1. Description

Basic principles of the AP were developed in 2001 [5]. Until that time only

GP and GE and their mutations existed. GP uses Genetic Algorithms while AP
can be used with any evolutionary algorithm, independently on individual
representation. To avoid any confusion based on the use of names according to
the used algorithm, name - Analytic Programming was chosen by the author,
because AP stands for synthesis of analytical solution by means of
evolutionary algorithms [18] - [25].

According to the authors of AP, it was inspired by numerical methods in
Hilbert spaces (space with mutually orthogonal functions) [43] and by GP.
Principles of AP [23] are somewhere between these two philosophies. From
GP an idea of evolutionary creation of symbolic solutions is taken into AP
while from Hilbert spaces an idea of functional spaces and building of
resulting function by means of a searching process usually done by numerical
methods like Ritz or Galerkin is adopted. AP as well as GP is based on a set of
functions, operators and so-called terminals, which are usually constants or
independent variables like for example:

• functions: Sin, Tan, Tanh, And, Or
• operators: +, -, *, /, dt,…
• terminals: 2.73, 3.14, t,…

All these “mathematical” objects create a set which AP tries to synthesize

into an appropriate solution form. Main principle (core) of AP is based on

- 30 -

discrete set handling [5], originally proposed in [44], see Fig. 3.5 and Fig.
3.6.

Discrete set handling shows itself as universal interface between EA and a
symbolically solved problem. This is why AP can be used almost by any
evolutionary algorithm.

Briefly said, in AP, individuals consist of non-numerical expressions
(operators, functions,…) as described above, which are in evolutionary
process represented by their integer indexes (Fig. 3.5). The index then serves
like a pointer into the set of expressions and AP uses it to synthesize resulting
function-program for cost function evaluation [22].

 Fig. 3.5: Discrete set handling

Fig. 3.6: Main principles of AP

- 31 -

The functionality of the discrete set handling can be on the concrete
example in Fig. 3.6 described as follows.

All simple functions and operators are in so called General Function Set
(GFS) [22]. Each simple function, operator or variable is then divided into
groups according to the number of arguments which can be inserted during the
evolutionary process to subset GFS3arg, GFS2arg...GFS0arg (Fig. 3.7).

Fig. 3.7: Example of set of General Functional Set and its subsets

The individual consists of 6 arguments (indices, pointers to GFS). The first
index is 1, meaning that + is taken from the set of functions GFSall. Function
plus has two arguments therefore indexes 6 and 7 are arguments of plus
(expression (3.2).

 6 + 7 (3.2)

Index 6 is then replaced by Sin and index 7 by Cos (expression (3.3)).

 Sin + Cos (3.3)

Sin and Cos are one-argument functions. After index 7 follows index 8,

which is replaced by Tan (expression (3.4)). Tan is also one-argument
function.

 Sin(Tan) + Cos (3.4)

After index 8 the individual takes index 9, which is replaced by “t” and this

is an argument of Cos (see expression (3.5)).

- 32 -

 Sin(Tan) + Cos(t) (3.5)

If the last index is 9, the process would finish easily. Under this index
would be a variable “t”, and this is an argument of Tan. The resulting function
mapping by AP would be then expression (3.6).

 Sin(Tan(t)) + Cos(t) (3.6)

But in our case there is function Mod. This needs an argument to work

properly. AP will not allow this. Instead of Mod the AP will jump into the
subspace in this case directly to GFS0arg. In other cases it is counted as if it can
be used also as an operator with more arguments. In the GFS0arg there was
found 11th element which is “t”. So we will obtain again the expression (3.6).

This description was shown on mathematical operators and objects as
functions, variables etc. for simplicity. But it can be used as linguistic terms
which must then be suitably transformed in the cost function to the numerical
value because of evolutionary algorithms. The usage of algorithms to find a
final formula is necessary as mentioned in the introduction. They need
numerical value as the measurement of quality of the solution.

Analytic programming was used for e.g. in solving following problems:
- sextic, quintic, 3sine, 4sine problem [20] with the use of algorithms of

Simulated Annealing (SA) [10], Genetic Algorithms (GA) [3], Differential
Evolution (DE) [44], [4] and Self-Organizing Migrating Algorithm (SOMA)
[5]

- Boolean symmetry and parity problems [21], [22], again with SA, GA,
DE and SOMA

- Solving of ordinary differential equations (ODE): u’’(t) = cos(t), u(0) = 1,
u(π) = -1, u’(0) = 0, u’(π) = 0 [43], 100 times repeated, in that case AP was
looking for suitable function, which would solve this case of ODE, by DE and
SOMA in [18], [19]

- Solving of ODE: ((4 + x)u’’(x))’’ + 600u(x) = 5000(x-x2), u(0)=0,
u(1)=0, u’’(0)=0, u’’(1)=0, Again as in the previous case, AP was used to
synthesize a suitable function – solution of this kind of ODE. This ODE was
used from and represents a civil engineering problem in reality, [18]

- 33 -

- Setting an optimal robot trajectory [23], [24] with algorithms SOMA, DE
and SA

- Synthesis of neural networks [25] with algorithm SOMA
- Chaos synthesis [26]

3.3.2. Versions of AP

Today, AP exists in three versions. In all three versions the same sets of
functions, terminals, etc. as Koza use in GP [12] - [14] are necessary for the
program synthesis. The second version (APmeta, lets call the first version
APbasic) is modified in the sense of constant estimation. For example, when
Koza uses in so called sextic problem [12], randomly generated constants, AP
uses only one, called “K”, which is inserted into the formula at various places
by evolutionary processing. The function can look like as in (3.7).

!

K

x + Kx
 (3.7)

When the program is synthesized, then all “K” are indexed so that K1, K2,

…, Kn, are obtained in formula (3.8), and then all Kn are estimated by second
evolutionary algorithm.

!

K
1

x + K
2
x

 (3.8)

Because EA “works under” EA (i.e. EAmaster►program►K indexing

►EAslave►estimation of Kn), this version is called AP with metaevolution -
APmeta. As this version was quite time consuming, another modification of
APmeta was done extending the second version by estimation of K. It is done by
suitable methods of nonlinear fitting from the environment Mathematica
(www.wolframresearch.com) (APnf). This method has shown the most
promising performance when unknown constants are present, so some
comparative simulations were performed using third version - APnf in article
[22].

- 34 -

3.4. Comparison
The above described tools have some elements similar and some that are

unique. To the same elements belongs the aim of the creation of the complex
formula, which fits data or required behaviour as well as possible. Tools used
evolutionary algorithms to their successful run. On the other hand, there are
also some disadvantages within each tool.

The first thing, which is different for these tools, is the use of evolutionary
algorithms. GP can use only genetic algorithms; it is basically the same as
genetic algorithm because the simple functions are directly set up inside the
individuals. Then the operators of GA are applied. GE is different because it
was not used with GAs only, but also with a few strategies with binary
representation of individuals. The last tool, AP, is able to use arbitrary
evolutionary algorithm because of its structure and techniques of manipulating
with arguments in individuals – discrete set handling as described above.

The programming language is related to this topic as well. GP was used in
LISP programming language which enables easy manipulation with
symbolically written function inside genetic algorithm. The other two tools are
able to be implemented in any programming language.

The fact, that AP can be implemented in arbitrary programming language
and it can use arbitrary evolutionary algorithms (e.g. DE, SOMA, GA, SA)
was the most important reason for the choice of AP for other experiments. The
quality of results depends on the powerful evolutionary algorithm
performance. The robustness of the method depends on the choice of
evolutionary algorithm. From the experiments, we accomplished, it was found
that Self-Organizing Migrating Algorithm [5] and Differential Evolution [44],
[4] are very powerful algorithms which will be described in the next section.
Also to show that AP is able to cooperate with other evolutionary algorithms
in this work simulations with Simulated Annealing [2], [10] and Genetic
Algorithms [37] - [39] will be also carried out.

3.5. Other possible approaches
Other interesting investigations using symbolic regression were showed by

Johnson [27] working on Artificial Immune Systems and Salustowicz in

- 35 -

Probabilistic Incremental Program Evolution (PIPE) [28] which generates
programs from an adaptive probability distribution over all possible programs.

To Grammatical Evolution foreruns GADS which solves the approach to
grammar [29], [30]. Also from evolutionary algorithms artificial immune
systems came up the artificial immune system programming for symbolic
regression [31].

There are three other approaches – gene expression programming [32],
multiexpression programming [33], meta-modelling by symbolic regression
and pareto Simulated Annealing [34] and also hybrid methods which uses
numerical methods with evolutionary approach [35].

- 36 -

4. OPTIMIZATION ALGORITHMS -
EVOLUTIONARY ALGORITHMS

Optimization algorithms – mainly evolutionary algorithms are a necessary
part of the above described tools and can be used independently. Here, an
overview only of algorithms, which were used in further simulations, will be
given.

Division of optimization algorithms might be as follows. This is not the
only one point of view on that [1].

Fig. 4.1: Division of evolutionary algorithms – taken from [1]

Algorithms in stochastic and mixed group can have evolutionary features so
we are talking often about evolutionary algorithms in this case. The feature are
mainly in Mixed algorithms, but for e.g. Simulated Annealing can have elitism
inside and then it might be called also as an evolutionary algorithm.

In the following chapters we will discuss descriptions of several
evolutionary and stochastic algorithms which were used in simulations.

- 37 -

4.1. Deterministic algorithm – Hill Climbing
Hill Climbing (HC) algorithm belongs to one of the easiest algorithms. It

searches the surface of the cost function in the direction of the biggest
gradient. Therefore HC mostly ends in the nearest local optimum.

Hill Climbing starts from the randomly generated point on the surface of
the cost function. Then a point from the suitable neighbourhood is chosen.
Cost values of both points are compared and the point with the better value is
selected as the new startpoint. The better means in the case of finding
minimum – lower value, in the case of finding maximum – higher value. The
first version was for finding higher value and then the point seems to climb on
the hill of the cost function surface. Therefore a name Hill Climbing [9].

Other version might be that depending on the user, not only one but a
certain number of points is generated in the neighbourhood. In the case that
the best cost value is in the start point this one is chosen for the next loop. This
subroutine is repeated several times, dependent on the user.

4.2. Stochastic algorithm - Simulated Annealing

Simulated Annealing is one of older algorithms compared to SOMA and
DE. SA can be referred to as the forerunner of evolutionary algorithms [2]. It
was introduced by Kirkpatrick et al. for the first time in [10]. An inspiration
for developing this algorithm was annealing of metal [2], [10]. In the process
metal is heated up to a temperature near melting point and then it is cooled
very slowly. The purpose is to eliminate unstable particles. In other words,
particles are moved towards an optimum energy state. Metal is then in a more
uniform crystalline structure.

This approach was used in the case of the simulated annealing including
those terms. Simulated annealing is a better variation of the Hill-Climbing
algorithm [2]. Both start off from a randomly selected point. Compared to HC,
simulated annealing offers a slightly different approach. It means that there is
a chance to find a global optimum, not only a local one.

The principle of accepting a solution during a run of Simulated Annealing
is as follows: If the new cost value is better than the old one, the new one is
accepted immediately. It means that the difference between these two cost
values is negative. If the difference is positive (the new cost value is worse

- 38 -

than the old one) a number from interval <0, 1> is generated. If it is lower than
the probability according to equation (4.1), the new point is accepted,
otherwise the old one continues in the process. This is called the Metropolis
criterion [2], [10].

!

p(T) = e
"
#E

T (4.1)

where
p(T) - probability of transition for temperature T
ΔE - difference between cost values of previous and current

 solution
T - current temperature – control parameter for cooling schedule

The algorithm starts with high temperature T, which is decreased in steps.

Equation (4.2) shows standard cooling function [2], [10].

 Tn+1 = α Tn (4.2)
where
Tn+1 - temperature in the next step
Tn - temperature in the current step
α - cooling coefficient from interval <0, 1>

Simulated Annealing offers finding a global optimum better than Hill-

Climbing because probability causes that also a worse solution than the
previous can be accepted, which can mean finding a global optimum in the
end. Hill-Climbing goes from a start point in the direction of the biggest
gradient.

4.3. Genetic Algorithms

Genetic algorithms are a group of methods which are used to solve search
and optimisation problems. The basics of GA were laid down in 1975 by John
H. Holland [37].

Genetic algorithms are based on natural principles of evolution, which were
described by Charles Darwin. Many terms of natural genetics are also used in

- 39 -

genetic algorithms. Genetic algorithms work with the population of
individuals. However, they work with parameters in binary code. According to
the fitness function, which represents degree of quality, parents are chosen.

4.3.1. Coding and fitness function

As mentioned above, each individual has parameters called genes, which is
then coded in binary form. All genes of one individual give a string called
chromosome. In genetic terms, the set of parameters represented by a
particular chromosome is referred to as a genotype. The genotype contains the
information required to construct an organism which is referred to as the
phenotype. The same terms are used in GA. Chromosome is the genotype and
its cost value is phenotype [37] - [39]. The cost value says how successful the
solution is. Another term connected with GA is a fitness function with the
fitness value. This is used to choose parents because it says how much a
particular solution is suitable. Kvasnička [2] defined the fitness as

!

F(ind) =
Fmax " Fmin

fmin " fmax
f (ind) +

fminFmin " fmaxFmax

fmin " fmax
 (4.3)

where
F(ind) – fitness value for an individual ind
fmin – minimal value of cost function
fmax – maximal value of cost function
Fmax – rescaled value of cost function, value 1
Fmin – rescaled value of cost function, value 0

Equation (4.3) assigns fitness to each individual in the population linearly

in interval <0, 1> according to its cost value. The minimum value (best one)
has fitness 1 and maximum value (worst one) has fitness 0. Fitness represents
the interval on the unit circle or unit line [2], [37] - [39].

4.3.2. Reproduction

In the first steps, reproduction requires choosing suitable parents first. It can
be done quasi-randomly by means of Roulette Wheel on the unit circle or unit
line mentioned above (Fig. 4.2 and Fig. 4.3). Individuals with the lower

- 40 -

(higher - it depends on the programmer) cost value are more likely to be
selected than individuals with the higher (lower) cost value. Besides, to change
finding from minimum to maximum it is enough to multiply cost function by
minus one. Reselection is allowed too. Individuals with the good cost value
can be selected to become parents more often. Selected parents go to the

“mating pool”. In the mating pool two parents are randomly chosen to produce
two offspring.

Fig. 4.2: Scheme of RouletteWheel on unit circle

Fig. 4.3: Scheme of unit line

Their chromosomes are recombined by means of crossover and mutation
[37].

Crossover means cutting of chromosomes in a randomly chosen position
and changing parts between parents (see Fig. 4.4). Mostly two versions of the
crossover are used; 1-point or 2-point crossover. 1-point crossover is described
above; in 2-point crossover there are 2 points randomly chosen and parents
change part between these two points (Fig. 4.5). Also more than 2-point
crossover is possible but most often 1-point or 2-point are used because they
are sufficient [37].

F1

F2

F3

F4

F5

F6

Fi F1

Random (0,1)

F2 F3 … … Fp

1

- 41 -

Fig. 4.4: Scheme of 1-point crossover

Fig. 4.5: Scheme of 2-point crossover

After crossover, each offspring goes to the process of mutation. One bit is

mutated, i.e. if there is zero in the bit it is changed to one, and vice-versa. One-
(Fig. 4.6) or two-bit mutation is recommended.

Fig. 4.6: Scheme of 1-bit mutation

4.4. Self-Organizing Migrating Algorithm

(SOMA)
SOMA has been in existence since 1999 and was developed by Ivan

Zelinka [5]. SOMA works with groups of individuals (population) whose

 1 1 1 1 0 0 1 1

 1 0 1 1 0 0 1 1

Offspring

The same
offspring after 1
bit - mutation

Parent 1

Parent 2

Parent 1

Parent 2

- 42 -

behaviour can be described as a competitive – cooperative strategy. The
construction of a new population of individuals is not based on evolutionary
principles (two parents produce offspring) but on the behaviour of social
group, e.g. a herd of animals looking for food. This algorithm can be classified
as an algorithm of social environment [45]. To the same group of algorithms
particle swarm algorithm can also be put in, sometimes called swarm
intelligence [6]. In the case of SOMA, no velocity vector works as in particle
swarm algorithm, only the position of individuals in the search space is
changed [5] during one generation, here called ‘Migration loop’.

The rules are as follows: In every migration loop the best individual is
chosen, i.e. individual with the minimum cost value, who is called Leader. An
active individual from the population moves in the direction to Leader in the
search space. At the end of the movement the position of the individual with
minimum cost value is chosen. If the cost value of the new position is better
than the cost value of an individual from the old population, the new one
appears in new population. Otherwise the old one remains there. The
movement is described by equation (4.4) and graphical explanation can be
seen in Fig. 4.7.

!

xi, j
ML+1

= xi, j,START
ML

+ (xL, j
ML
" xi, j,START

ML
) * t *PRTVectorj (4.4)

where

!

xi, j
ML+1 - value of i–individual’s j–parameter, in step t in next

 migration loop ML + 1

!

xi, j ,START
ML - value of i–individual’s j-parameter, Start position in

 actual migration loop

!

xL, j
ML - value of Leader’s j– parameter in migration loop ML

t - step ! <0, by Step to, PathLength>
PRTVector - is vector of ones and zeros depended on PRT. If

random number from interval <0, 1> is less than PRT,
then 1 is saved to PRTVector, otherwise it is 0.

There exists four versions of SOMA – AllToOne, AllToOneRand,

AllToAll, AllToAllAdaptive. In this work we use version AllToOne despite
the fact that AllToAll and AllToAllAdaptive can be much better in searching.
They can search a wider area of solutions and the possibility of finding the

- 43 -

global optimum is then more probable. On the other hand, these two variations
of SOMA need more time for its successful end of evolution. Therefore for
simulations, less time-consuming computing of AllToOne was used in this
work. More details can be found in [1], [5].

 Fig. 4.7: SOMA example

PopSiz
e

- 44 -

4.5. Differential Evolution (DE)
Differential Evolution has been known in the scientific world since 1995.

Fathers of Differential Evolution are Ken Price and Rainer Storm [44], [4].
Differential Evolution is robust, fast, and effective with global optimization

ability. It does not require that the objective function is differentiable , and it
works with noisy, epistatic and time-dependent objective functions.

It is a population-based optimization method that works on real-number
coded individuals [44], [4]. This algorithm works also with population of
individuals but there is one exception compared to other evolution algorithms.
Four parents are used to produce offspring, not only two parents as is usual.
For each individual

!

r
x

i,G in the current generation G, DE generates a new trial
individual

!

r
" x
i,G by adding the weighted difference between two randomly

selected individuals

!

r
x

r1,G and

!

r
x

r2,G to a third randomly selected individual

!

r
x

r3,G .
The resulting individual

!

r
" x
i,G is crossed-over with the original individual

!

r
x

i,G .
The fitness of the resulting individual, referred to as perturbated vector

!

r
u

i,G +1,
is then compared with the fitness of

!

r
x

i,G . If the fitness of

!

r
u

i,G +1 is greater than
the fitness of

!

r
x

i,G ,

!

r
x

i,G is replaced with

!

r
u

i,G +1, otherwise

!

r
x

i,G remains in the
population as

!

r
x

i,G +1. All these actions are repeated in each generation to find
the best solution. More details can be found in [44], [4].

The behaviour can be seen in detail in Fig. 4.8 [1].

- 45 -

 Fig. 4.8: DE example

PRACTICAL PART

- 47 -

5. EXPERIMENTS PERFORMED BY
ANALYTIC PROGRAMMING

Several simulation experiments with Analytic Programming were done
over the last four years. They were of a different nature, essentially in order to
prove that AP is able to solve problems in different fields. Firstly, an
approximation of data was tested, then design of electronic circuits and also
settings of robot trajectory were carried out.

5.1. Data approximation

Simulations with regression were carried out on four selected problems –
Quintic, Sextic, ThreeSine and FourSine problems [20]. These problems were
selected from Koza’s Genetic Programming [12] to compare these two
methods. The aim was to find a suitable mathematical formula which fits
measured data (generated from the defined functions) as well as possible.

The following equations and figures show the four problems mentioned
above in a practical way. Equations (5.1) - (5.4) are for Quintic, Sextic, Three
Sine and Four Sine problems. The corresponding figures are given in Fig. 5.1.

 x5 – 2x3 + x (5.1)
 x6 – 2x4 + x2 (5.2)
 Sin(x) + Sin(2x) + Sin(3x) (5.3)
 Sin(x) + Sin(2x) + Sin(3x) + Sin(4x) (5.4)

a) b)

- 48 -

c) d)
 Fig. 5.1: Four problems – a) Quintic, b) Sextic polynomial in the

interval [-1.0, +1.0],
c) Three Sine, d) Four Sine problem in the interval [-π, +π]

Fig. 5.2 shows examples of all 50 simulations in one picture for SOMA
algorithm simulations. The nonlinearities in figures c) and d) are caused by
measurement in some points not in the interval continuously.

a)

b)

c)

d)

 Fig. 5.2: Examples of results – a) Quintic, b) Sextic polynomial, c)

Three Sine, d) Four Sine problem for SOMA algorithm

- 49 -

During these tests, four evolutionary algorithms were used – SOMA, GA,
DE, and SA. All simulations were done 50 times. It means that 4 problems
times 4 algorithms times 50 repetitions times 500 to 18 000 cost function
evaluations were carried out in total.

Simulations showed that AP is faster than GP according to number of cost
functions evaluations. While GP needed between 1 500 000 and 3 000 000
cost function evaluations (CFE), AP was successful with only 500 to 18 000
CFE as can be seen in Table 5.1. More details can be found in [20].

Table 5.1: Overview of results for approximation data

 GP AP

 GA GA SOMA DE SA

Number of
individuals in

population

4000

40 (40)

50 (150)

50 (150)

Dimension of
an individual

100 (120)

100 (150)

100 (150)

40 (120)

Number of
evalutations of
cost function

<1500 000,
3000 000>

<500,
18 000>

<500,
18 000>

<500,
18 000>

<500,
18 000>

5.2. Logical circuits design
 Also in this case we chose some examples from Koza’s Genetic

Programming [12] – Boolean k-symmetry and even-k-parity problem. The aim
was to find a suitable shape of circuits which would behave according to a
given truth table. The even-k-parity problem means that the number of k

- 50 -

inputs with value true is even. Even-3, 4, 5, 6-parity problems were carried
out. For the symmetry problems the situation is different in that the true values
in inputs should be symmetric. Also for k - symmetry problems we did
simulations where k was 3, 4, 5 and 6 [12, 13]. Because of the dimensions of
the truth tables, there are only 3 – parity (Table 5.2) and 3 – symmetry
problems (Table 5.3) for illustration.

Table 5.2: Truth table of 3- parity problem

 Table 5.3: Truth table of 3- symmetry problem

INPUT A INPUT B INPUT C OUTPUT
True True True False
True True False True
True False True True
False True True True
True False False False
False True False False
False False True False
False False False True

INPUT A INPUT B INPUT C OUTPUT
True True True True
True True False False
True False True True
False True True False
True False False False
False True False True
False False True False
False False False True

- 51 -

Final output of the 3 parity problem is e.g. in (5.5) which has its earlier
extended version in (5.6).

 (5.5)

In this case also 50 simulations for each configuration of k were carried out
for symmetry and parity problems. For k = 3-symmetry problem the smallest
number of cost function evaluations (CFE) was 79 for DE and the highest
14 991 for SOMA algorithm in all 50 simulations for each algorithm. With
increasing value of k the CFE was also increasing. For k = 6 the average value
of CFE was around 200 000. The values were similar for even – k – parity
problems. During simulations 49 or 50 out of 50 simulations were successful
for different algorithms. More details can be found in [22].

- 52 -

 (5.6)

- 53 -

5.3. Optimal setting of robot trajectory
This task was used to prove that AP is able to work also with linguistic

terms which in real words means some commands for robot like move
straight-forwardly, turn left, turn right, look before and find what is there, etc.
[23], [24]. To try to see, if it works, we chose a task Santa Fe Trail for
artificial ant from Koza’s Genetic Programming [12].

The problem was designed so that an artificial ant should go through a
defined trail (Fig. 5.3) and eat all the food that was there. The trail was set up
as 31 x 32 fields where black field means food, grey and white is basically the
same, i.e. there is nothing. But the grey colour was used to highlight the
problems on the way for the ant which are e.g.:

– one simple hole (position [8,27] in Fig. 5.3)
– two holes in the line (positions [13,16] and [13,17])
– three holes ([17,15], [17,16], [17,17])
– holes in the corners

o one hole (position [13,8]]
o two holes ([1,8],[2,8])
o three holes ([17,15], [17,16], [17,17])

Fig. 5.3: Santa Fe Trail for artificial ant

- 54 -

The cost function was set up as in (5.7)

 CV = 89 – NumberFood (5.7)

5.3.1. Set of functions

The set of functions used for movements of the ant is following. As a set of

variables GFS0arg [22], i. e. functions, which provide moving of an ant, without
any argument which could be add during the process of evolution.

The set consist of
• GFS0 = {Left, Right, Move},

where
GFS0 – a set of variables and terminals, zero-arguments functions GFS0arg

[22],
Left – function for turning around in the anticlockwise direction
Right – function for turning around in the clockwise direction
Move – function for moving straight and if a bait is in the field where the

ant is moved, it is eaten.

This set of functions is not enough to make successfully a desired task.

More functions are necessary. Then a GFS2 and GFS3 were set up.

• GFS2 = {IfFoodAhead, Prog2}
• GFS3 = {Prog3}

Where the number in GFS means the arity of the functions inside, i.e.

number of arguments which are needed to be evaluated correctly. Arguments
are added to those functions during evolution process as described in chapter
about AP.

IfFoodAhead is a decision function – the ant controls the field in front of it
and if there is food, the function in the field for truth argument is executed;
otherwise function in false position is performed.

Prog2 and Prog3 are the same function in the principle. They do 2 or 3
functions in the same time. These two functions were originally defined also in

- 55 -

Koza’s approach but in AP it is necessary because of the structure of
generating the program.

5.3.2. Results

50 simulations were performed for this task with three used algorithms.

SOMA and DE were more successful with the same settings of cost function
evaluations. SA was successful only in a third of the cases.

The solutions obtained were also under 400 steps which was the request to
eat all the food as can be seen in Table 5.4. The best was 367-step-solution
found by DE. The limit of 400 steps was one of conditions for cost function
defined by Koza [12]. But his solution showed that it did not fit this condition
at all. It needed 545 steps [46] as also our simple simulation proved.

Table 5.4: Number of steps for artificial ant

Number of steps

SOMA DE SA

Minimum 396 367 406

Maximum 606 604 605

Average 547 540 535

This task was time consuming which means that one simulation can

hypothetically take 1 – 3 days on the computer with Athlon XP 1800+
processor, 256 MB RAM memory, Windows XP and Mathematica 5.2. It
depends on a number of cost function evaluations. One cost function
evaluation took 1 to 6 seconds. The time could be decreased by parallelization
of the process, which is one of the further plans. Koza did parallelization in

- 56 -

GP as well. He uses GP activity computer-cluster consisting of hundreds of
PCs [47]. But in our case we used only 1 computer for all simulations.

5.3.3. Output from the simulations

The output from the simulations was the rules of how to move on the grid

with the food. The winner was DE with 367 steps to reach the final field as
shown in (5.8)

IfFoodAhead[Move, IfFoodAhead[Move, Prog2[Prog2[Right,
IfFoodAhead[Prog2[IfFoodAhead[IfFoodAhead[Move, Move], Move],
Move], Prog3[IfFoodAhead[Move, IfFoodAhead[Prog3[Right, Right,
Prog2[Left, Prog2[IfFoodAhead[Prog2[Prog2[Left, Move], Right],
IfFoodAhead[Move, Left]], Prog2[IfFoodAhead[Move, Move], Prog2[
IfFoodAhead[Move, Right], Right]]]]], Left]], Left, IfFoodAhead[Move,
Right]]]], Move]]] (5.8)

This system of rules shows how the ant should behave on its way. This does
not solve the concrete trajectory step by step. These rules should work also on
other similar types of grids where the condition concerned to food is applied,
i.e. food must be in the neighbourhood lines. There must not be a free line
between them. The previously described problems might appear even in bigger
number of holes in the same line. If we change the grid and placement of the
food the number of steps will obviously change. Details can be seen in [23],
[24].

5.4. Local conclusion and discussion

The previous three case studies showed that AP is able to work with

numerical values, approximation data as well as with linguistic terms which
were either operators for design of electronic circuits and setting of optimal
trajectory for a robot. This presumptions leads to the conclusion that AP

- 57 -

should be able to work also with simple operators of evolutionary algorithms
and create a new one.

The proof was also given in synthesis of chaos [26] and neural networks
[25].

-58-

6. CREATION OF EVOLUTIONARY
ALGORITHMS - PROGRESS

6.1. First experiments

The objective was to try to create a new optimization algorithm, probably
of evolutionary character, which could be robust and effective to optimize
difficult problems in the world. This is a metaevolution in the context we use
it. According to previous approaches, metaevolution is determining the
optimal evolutionary algorithm, best types of evolutionary operator and their
parameter setting for a given problem. It means basically, that one
evolutionary algorithm tunes another one [9]. But our approach is different.
We use metaevolution on higher level for creating a new algorithm
completely, not only for setting of its parameters [11].

The research started with collecting of operators of known evolutionary
algorithms like mutation or crossover. These operators are used as basic
simple functions for Analytic Programming.

The first step was to try to create an algorithm which is known from its
basic operators. Differential Evolution was used because of its simple structure
and its easy implementation.

The original algorithm of DERand1Bin version of Differential Evolution
[44], [4] is described in the section about evolutionary algorithms.

For the purposes of creating DE back we extracted the following operators.
SelectionDE – this is operator which chooses individuals from population

for other instructions. In this case the output will be four individuals – one
active individual and 3 randomly chosen ones.

MutationDE - into this operator four individuals are coming from
SelectionDE. Here mutation is produced as follows: one of the randomly
chosen parents is subtracted from the second parent and so called differential
vector is produced. This one is multiplied by a mutation constant and the result
of this operation is a weighted differential vector. The third parent plus the
weighted differential vector give a noise vector. The noise vector is the output
of the MutationDE.

-59-

CrossoverDE – the active individual provides some arguments and the
input individual to CrossoverDE gives some other arguments and the trial
vector is also given.

All operators are then applied on each individual in a sequence. The last
operator which produces the complete algorithm is called FinalDE. Inside of
this the output individual is compared with the active one and the one with
better or the same value of cost function appears in the new population.

The original Differential Evolution then appears like in the equation (6.1)
consisting from the above described operators:

 CrossoverDE(MutationDE(SelectionDE))) (6.1)

This means in words, that firstly operator SelectionDE will be used. Its

result will be put inside the operator MutationDE and at the end CrossoverDE
will be applied. The algorithm DE is described also in section about
evolutionary algorithms in detail. The inscription is also able to write as (6.2).
But for further simulations we used type (6.1).

 CrossoverDE ◦ MutationDE ◦ SelectionDE (6.2)

Analytic Programming was then applied on DE operators. Parameter setting

for AP is described in the next section.

6.1.1. General Function Set
Analytic Programming produces a final formula from elementary functions.

In this case elementary functions are DE operators described above. In AP,
subsets of simple functions according to the number of arguments are called
GFS0arg, GFS1arg,GFS2arg etc. GFS stands for General Function Set which was
described in [18] - [24].

The operators of DE are put into these subsets as follows.
GFS0arg - Set of 0-arguments functions, so called terminals, contains

SelectionDE which produces 4 individuals.
GFS1arg - Set of 1-arguments functions contains MutationDE and

CrossoverDE. Both need to have some individuals produced e.g. from
SelectDE as input.

-60-

6.1.2. Cost Function
When Analytic Programming creates a complex formula, it is necessary to

assign some value that represents the suitability of the individual and its
quality. In the case of creating a new evolutionary algorithm, benchmarking on
some test functions is necessary. In the first preliminary study we concentrated
to try the just generated algorithm on two test functions - whether it achieves
the minimum in both test functions or not. Two cost functions were Sphere
model, 1st De Jong as example of unimodal function and Schwefel as example
of multimodal function [1] – Fig. 6.1 and Fig. 6.2.

 Fig. 6.1: DeJong function – unimodal (left – 2 arguments and right – 1
argument used)

 Fig. 6.2: Schwefel function – multimodal (left – 2 arguments and right
– 1 argument used)

-61-

1st De Jong and Schwefel functions are in analytical way as seen in
equations (6.3) and (6.4). No other condition was applied.

!

f x() = xi
2

i=1

Dim

" (6.3)

!

f x() = "xi # sin xi()
i=1

Dim

$ (6.4)

The value of the cost function was designed so that firstly the generated
algorithm is verified as to the ability to find minimum on the easy unimodal
function 1st De Jong. If the minimum is reached the Schwefel function is
tested. Then the cost value is the output from Schwefel. If there is no
successful result from 1st De Jong, the output value is the absolute value of 1st
De Jong. The values were known because we used test functions with 2
arguments.

6.1.3. Results of the preliminary study
The aim of the preliminary study and the aim of these simulations was to

find the original Differential Evolution. The settings for parameters were done
according to heuristic analysis during the use of it.

The length of the individual in Analytic Programming was set up to 15 and
the number of simple functions to 3. It means that there exists 32767
possibilities of generated algorithms according to variations with repetition.

And it is quite natural that also in the first population, randomly generated
without any evolution, can be found algorithms which can fit the minimum.
Following examples show successful and also unsuccessful individuals, i.e.
generated algorithms.

Examples of generated algorithms which were not successful (6.5) - (6.7):

 CrossoverDE(CrossoverDE(MutationDE(CrossoverDE(CrossoverDE(Selectio
nDE))))) (6.5)
 SelectionDE (6.6)
 CrossoverDE(SelectionDE) (6.7)

and also some successful examples (6.8) and (6.9):

-62-

 CrossoverDE(MutationDE(SelectionDE)) the original Differential Evolution
 (6.8)

 MutationDE(MutationDE(MutationDE(MutationDE(SelectionDE))) (6.9)

The final (6.9) was tried in simulations of 100 times as the original DE with

the same settings of parameters as the original DE.
The following pictures Fig. 6.3 displays behaviour of algorithms during

100 repeated simulations – a) original algorithm DE and b) a newly created
one.

a)

b)
 Fig. 6.3: 100 simulations for 1st De Jong a) original DE, b) new

algorithm

-63-

The results are shown also for Schwefel function in Fig. 6.4. Comparison
of minimal and maximal values during all 100 simulations is also in Table 6.1.

a)

b)
 Fig. 6.4: History of best individual for Schwefel a) original DE and b)

new algorithm

As can be seen, the generated program was able to find minimum as well as
the original DE. It is basically the same, only there are more mutations. In the
unimodal function the convergence is faster than in original DE but in the case
of Schwefel function it took more time to achieve the minimum on average.
The more important is faster convergence in the multimodal functions because
such problems are found in every day optimization. And the requirement is to

-64-

find the optimum as fast as possible, and of course, not to finish in the local
optimum.

Table 6.1: Comparison of results of original DE and generated algorithm

 ORIGINAL DE GENERATED ALGORITHM

 1st De Jong Schwefel 1st De Jong Schwefel

Minimum 2.04492 x 10-8 -837.966 2.39949 x 10-16 -837.966

Maximum 6.61369 x 10-6 -837.966 1.45227 x 10-14 -837.966

Average 9.29224 x 10-7 -837.966 3.6897 x 10-15 -837.966

In later analysis of the solution it was found that it is another version of the

DE. There are only more individuals which are used for mutations to create a
new individual for a new population.

6.2. Design of new cost function

6.2.1. New operators added and renamed

For the purpose to create evolutionary algorithms by means of Analytic

Programming, we extended algorithms from Differential Evolution from the
previous section and [48] also to Self-Organizing Migrating Algorithm, Hill
Climbing algorithm and Simulated Annealing. Details of these algorithms can
be found in [4], [5], [9] and [10]. It was necessary to separate its operators like
mutation, crossover and selection of parents. The following operators were put
inside GFS sets according to the number of arguments.

We had to also rename the operators since we used more versions of some
algorithms. Therefore we need to distinguish between them. The name
contains also connections to the appropriate versions [50].

GFS0arg= {SelectDE, SelectLeaderSOMA, SelectSOMARandLeader,

SelectHC}

-65-

GFS1arg= { MutateDERand1, CrossDEExp, CrossDEBin, MutateDEBest2,
MutateDERand2, MutateDECurrentToBest, MutateDEBest1,
SOMAATOWithPRT, SOMAATOWithoutPRT, SOMAATORandWithPRT,
SOMAATORandWithoutPRT, CompleteHC, CompleteSA }

SelectDE – this is the operator which selects individuals from population

for other instructions. In this case, the output will be 4 individuals – one active
individual and 3 randomly chosen.

MutateDERand1- here mutation is produced as follows: one of the

randomly chosen parents is subtracted from the second parent and a so called
differential vector is produced. This vector is multiplied by a mutable constant
and the result of this operation is a weighted differential vector. The third
parent plus the weighted differential vector produces a noisy vector. This
noisy vector is the output of the MutateDERand1.

MutateDEBest2, MutateDEBest1, MutateDERand2,

MutateDECurrentToBest are mutation functions of other version of
Differential Evolution.

CrossDEBin – the active individual gives some arguments and the input

individual to CrossDEBin gives some other arguments and the trial vector is
created. This is given by crossover constant Cr. If random number from
interval <0,1> is less than Cr the arguments from active individual is taken,
otherwise it is from the individual which is input of CrossDEBin.

CrossDEExp is similar crossover to CrossDEBin. The difference is in the

choice of arguments into the trial vector. Until first case of random number
from interval <0,1> is less than Cr, arguments from active individual are
taken, then the rest from the input individual of CrossDEExp [49].

SelectLeaderSOMA – chooses the best individual in the population (with

the minimal value of cost function).

SelectSOMARandLeader – choses the random individual from population.

-66-

SOMAATOWithPRT – is the operator which create a table of new
individuals which are in the direction from active individual to Leader in Steps
and the best individual is selected as an output individual.

SOMAATOWithoutPRT, SOMAATORandWithPRT,

SOMAATORandWithoutPRT – are similar as the previous one, the only
difference is in the use of PRTVector and best individual as Leader or random
individual as Leader.

SelectHC – chooses random point in the Cost Function.

CompleteHC – is a process of Hill Climbing algorithm. If the randomly

chosen point from the neighbourhood has less cost value, it is chosen as a new
startpoint, otherwise the current start point is used again.

CompleteSA – is a process of Simulated Annealing algorithm. If the

randomly chosen point from the neighbourhood has less cost value, it is
chosen as a new start point, otherwise the condition of probability of
acceptance a worse solution is applied or the current start point is used again.

All above described operators work as modules with some input and some

output. The functionality is related to one active individual. Therefore for
application for all individuals in the population FinalAlgorithm is set up as
well.

Original Differential Evolution of DERand1Bin version can be written as

the equation (6.10).
 CrossDEBin(MutateRand1(SelectDE)) (6.10)

Original SOMA in version All To One is then used as equation (6.11).

 SOMAATOWithPRT (SelectLeaderSOMA) (6.11)

Hill Climbing has similar notation (equation(6.12))

 CompleteHC (SelectHC) (6.12)

-67-

Hence, Simulated Annealing has the same method of selecting individuals
at the beginning as the HC we used for the notation (6.13) same operators.

 CompleteSA (SelectHC) (6.13)

6.2.2. Design of cost function
The testing functions were the same as in the previous section – 1st De Jong

and Schwefel. The value of Cost Function was designed so that initially the
generated algorithm is observed if it is able to find the minimum value on the
easy unimodal function 1st De Jong. Better said, it is testing the difference
between global extreme and the extreme approached by a new generated
algorithm. If the difference under 10-7 is reached, then the Schwefel function is
tested similarly. We change the approach to the value in order to measure the
difference as the optimization might be easier in that the order of the cost
value will be the same for both functions and we can easily work with the
penalization without any fear whether the values of some functions are
suitable or not.

If the algorithm is successful on both functions, the value is set as seen
equation (6.14) in the case that number of cost function evaluations were less
than the average.

 |CFESchwefel – avgCFESchwefel| / SchwefelValue (6.14)

where
CFESchwefel is the number of cost function evaluations used to reach the

SchwefelValue by the generated program
avgCFESchwefel is the average value of the number of cost function

evaluation reached by SOMA and DE in 100 times repeated simulations [48].
SchwefelValue is the value of reached extreme

If the number of cost functions were higher, the value is behaving

according to equation (6.15).

-68-

 SchwefelValue |CFESchwefel - avgCFESchwefel| (6.15)

In the case the algorithm was not successful in the Schwefel function but

was successful in 1st De Jong function, the rules are similar as in the case of
Schwefel function, as seen in equations (6.16) and (6.17).

 |CFEDeJong – avgCFEDeJong| / DeJongValue (6.16)

DeJongValue (| CFEDeJong - avgCFEDeJong | + |CFEDeJong –
avgCFEDeJong|) (6.17)

where
CFEDeJong is the number of cost function evaluations used to reach the

DeJongValue by the generated program:
avgCFEDeJong is the average value of the number of cost function

evaluation reached by SOMA and DE in 100 times repeated simulations [48].
DeJongValue is value of the reached extreme.

In the case that the generated algorithm was not successful at all, the final

equation is used (6.18).

 DeJongValue |CFEDeJong | (6.18)

This is not the only way as to how to design a suitable cost function. This

one differs from the previous one not only in including the number of cost
function evaluations inside the CostFunction but also in the approach to the
value of the extreme itself [48]. In previous cases, we used the original value
of the extreme, but more suitable is to find the difference from the global
extreme. Then we are close to zero value and it is more predictive.

6.2.3. Results
This section compares DE and SOMA with newly developed algorithms.

All simulations here were performed with 2 dimensional benchmark functions.
The following figures are histories of behaviour of the best individual in the

-69-

population - 100 times repeated for SOMA algorithms – 1st De Jong and
Schwefel (Fig. 6.5). DE algorithms has its graphs of history in Fig. 6.3 a) for
1st De Jong and in Fig. 6.4 a) for Schwefel.

a)

b)

Fig. 6.5: 100times repeated for SOMA – a) 1st De Jong, b) Schwefel

The following table (Table 6.2) show values of extremes for 1st De Jong
and Schwefel which were found by DE and SOMA for all 100 simulations.

-70-

Table 6.2: Values of extremes found by DE and SOMA

 Original DE Original SOMA

 1st De Jong Schwefel 1st De Jong Schwefel

Minimum 2.04492 x 10-8 -837.966 2.39949 x 10-16 -837.966

Maximum 6.61369 x 10-6 -837.966 1.45227 x 10-14 -837.966

Average 9.29224 x 10-7 -837.966 3.6897 x 10-15 -837.966

During our simulation we found successful and also non successful

solutions.
As example, the following equations (6.19) - (6.22) belong to non

successful solutions.

 SelectDE (6.19)
 SelectLeaderSOMA (6.20)
 CrossDEBin(SelectDE) (6.21)
 CompleteHC(SelectDE) (6.22)

The successful solution can be divided into two groups – which found

subsolutions with requested diversity but the number of cost function
evaluations were high and the final solution therefore was not so good
(equations (6.23) and (6.24)). The second group contains solution which were
successful in all conditions including original algorithms of SOMA and DE
(equations (6.25) - (6.27)).

 SOMAATOWithPRT(SOMAATORandWithPRT(SOMAATOWithoutPRT(M
utateDERand1(SelectSOMALeader)))) (6.23)

 SOMAATOWithPRT(MutateDEBest1(MutateDERand1(MutateDECurrentTo
Best(MutateDEBest1(MutateDECurrentToBest(SelectSOMARandLeader))))))
 (6.24)

 CrossDEBin(MutateRand1(SelectDE)) (6.25)
 SOMAATORandWithPRT (SelectDE) (6.26)

-71-

 MutateDEBest1(MutateDERand1(SelectSOMARandLeader)) (6.27)

Following Fig. 6.6 show graphs for 100times repeated simulations of

algorithm with notation in (6.27).

a)

b)

Fig. 6.6: 100times repeated for new algorithm - a) 1st De Jong, b) Schwefel

Table 6.3 shows values of extremes which were found by two new

generated algorithms.

-72-

Table 6.3: Values of extremes for 1st De Jong and Schwefel found by new
generated algorithms

 Generated algorithm (6.23) Generated algorithm (6.24)
 1st De Jong Schwefel 1st De Jong Schwefel

Minimum 5.86771x 10-10 -837.966 7.05752 x 10-10 -837.966
Maximum 1.53905 x 10-4 -800.053 5.90596 x 10-4 -799.892
Average 9.06618 x 10-6 -835.993 3.24827x 10-5 -835.871

The number of generations or migrations in new algorithms in the graph

might be a little confusing. Number of cost function evaluations (CFE) in one
loop for SOMA, DE and two new evolutionary algorithms are in equations
(6.28) - (6.31). It means that 150 generations in DE means 3000 CFE if
number of individuals is 20. Similar CFE (3109) in SOMA is for Migrations =
6. In new algorithms, 5 loops means 8282 and 3227 CFE for (6.23) and (6.24).

 (PopSize – 1) Migrations (PathLength / Step) (6.28)
 NP Generations (6.29)
 NP Generations (3 (PathLength / Step) + 1) (6.30)
 NP Generations ((PathLength / Step) + 5) (6.31)

As can be seen, the generated programs were able to find minimum values,

along with DE and SOMA. But not in all cases as Table 6.3 shows even if
CFE is higher than in SOMA and DE. On the other hand the connection of
several evolutionary operators show the promising approach, and its advantage
which might occur in higher dimensional problems.

6.3. Higher dimensional problems
Usually in real life problems there is a need to find more optimal arguments

than only two. Therefore we need higher dimensional problems to add into the
costfunction for creating new optimization algorithms. In literature there
appear usually optimizations of testing function in 20 or 100 dimension space.

-73-

We used 20 dimensional test function 1st De Jong and Schwefel, the same
functions as in previous case. The settings in the costfunction for penalization
were the same as above. Obviously only the average number of cost function
evalutations for DE and SOMA in 100 repeated simulations had to be
increased according to behaviour in 20 dimensional problems. 20 dimensional
problems are more time consuming then only 2 dimension ones. This was the
reason that it took several days to obtain first results. For finding algorithms
we used iMac with 1.9 GHz PowerPC G5 processor, 512 MB RAM, Mac OS
X version 10.4.8 and Mathematica 5.2.

Following tables (Table 6.4 - Table 6.7) shows settings for evolutionary
operators as they were heuristically found as suitable in previous optimization
tasks.

Table 6.4: Settings for SOMA operators

PathLengthIIII 3.
StepIIII 0.11
PRTIIII .1
PopSizeIIII 60

Table 6.5: Settings for DE operators

CrIIII 0.8
FIIII 0.8
NPIIII 60

Table 6.6: Settings for HC

MaxIterIIII 500
StepHCIIII 2.3

-74-

Table 6.7: Settings for SA

TIIII 10 000
TminIIII 0.000 01
alphaIIII 0.91
MaxIterIIII 500
MaxIterTempIIII 100

The notation IIII is added to avoid confusion between settings for

algorithms who will take care to create new evolutionary algorithms and
settings for the simple operators.

In the case of synthesis, we cannot discuss about migrations or generations
as this is unknown. We used marking iterations. Iterations were setup to 50.
The process usually produce more complex structure and this is connected
with one individual in the population. Although it is quite small number the
cost function evaluations is then geometrically increased with usage of several
operators in the line.

For the evolution with AP we used SOMA with following settings as given
in Table 6.8.

Table 6.8: Settings for SOMA for AP

PathLength 3.
Step 0.22
PRT .1
PopSize 20
Migrations 20

There were performed 100 cost functions evaluations until we obtained

several results. Some successful, some not successful.

Examples of nonsuccessful algorithms according to conditions in cost

function are given in following expressions (6.32) - (6.34):

-75-

 CrossDEExp(SelectSOMALeader) (6.32)

 CrossDEBin(CompleteHC(MutateDEBest1(CompleteSA(MutateDEBest2(
CrossDEBin(MutateDERand2(SOMAATOWithPRT(MutateDECurrentToBes
t(MutateDEBest2(SelectSOMARandLeader)))))))))) (6.33)

 MutateDERand2(SelectSOMALeader) (6.34)

The first expression (6.32) is nonsuccessful because only crossover
between the best one and the current individual is not enough in the requested
cost functions evaluations. The second (6.33) expression is too complex and
Hill Climbing and Simulated Annealing probably increase the number of cost
function evaluations that the algorithms is not suitable for fast optimization.
The last one is a surprise because it is the version of the Differential Evolution
without crossing. The problem is in the number of iterations. 50 iterations in
the case of unattached Differential Evolution is not enough. It needs more
iterations (generations). The suitable settings of parameters is very hard
optimization problem, thus the field of suitable settings is an open research
area.

Into group of successful algorithms belongs (6.35) - (6.38):

 SOMAATORandWithoutPRT(SOMAATORandWithPRT(SOMAATORand
WithPRT(MutateDECurrentToBest(SelectSOMALeader)))) (6.35)

SOMAATOWithPRT(SOMAATOWithPRT(SOMAATORandWithPRT(Cros
sDEBin(SOMAATOWithPRT(SelectSOMARandLeader))))) (6.36)

CrossDEBin(SOMAATOWithPRT(MutateDECurrentToBest(SelectSOMALe
ader))) (6.37)

 SOMAATOWithPRT(SelectSOMALeader) (6.38)

-76-

Firstly, it is obvious that (6.38) can be written as SOMAATO; this notation

is used later in tests.
The second view on this notations shows that Hill Climbing and Simulated

Annealing were given out of these notations evolutionary. The local search
increases the number of cost function evaluations. Presuambly, this is the
reason why only Differential Evolution and SOMA remains in the generated
algorithms.

6.3.1. Results

Algorithms in (6.35) - (6.38) were chosen for further simulations. We were

interested in their behaviours in unimodal and multimodal benchmark
functions in 2, 20 and 100 dimensional space.

This led to large number of simulations. We performed 16 benchmark
functions for 4 algorithms, for 3 study cases (2, 20 and 100 Dim). And each
case was 100 times repeated to produce graphs of history and convergence to
the extreme. Total number was 19 200 of runs each algorithm where the
number of cost function evaluations were from 70 000 to 300 000.

These simulations were taken on the XServe with 2x2 GHz Dual – Core
Intel Xeon processors with 1 GB RAM, Mac OS X version 10.4.10 and
gridMathematica 5.2. The whole machine contains 14 XServes, i.e. 56
processors together.

All graphs produced during the tests are shown in Appendix. Layout of the
Appendix is as follows. Firstly the charts for 4 algorithms of 100 repeated
simulations were recorded in sense of the best individual cost value per each
iterations. The number on the x axis is given as the cost function evaluations
(CFE) / number of iterations. CFE is there only for information because the
most often comparing parameter between two evolutionary algorithms
whereas the best individual was chosen in each iteration (generation,
migration). The following lines are then indicated by the number of the
algorithm (Algorithm 1 corresponds to (6.35), Algorithm 2 corresponds to
(6.38), Algorithm 3 corresponds to (6.38) and Algorithm 4 corresponds to
(6.38)). In each line, two graphs are shown. The one on the left side stands for

-77-

histograms of found extreme in each simulation. There is seen if the tests
ended in the similar point or if the algorithm shows big diversity and then the
irresponsibility.

The second chart shows the diversity in the final population for each
performance. There is shown the minimum, maximum and average of found
cost values. The diversity in population shows if the evolution still might make
some progress or not. If the maximum is basically in minimum that the
evolution is finished. The result is either the global extreme or local one,
however this depends on the cost value itself.

In the case of 2 dimensional systems there are also figures of the functions
itself in 3D charts. And on the right side there is contour plot with indicated
points in the global extreme.

The last notice is concerned mainly to SOMAATO, which is the one of the
“rediscovered” algorithms. All performed simulations for benchmark
functions were done with the same settings as it was in the cost function for
AP. No changes were made. It is obvious, that some problems would need a
bit more sensible settings, mainly in 100 dimension space. The performed
simulation might help in further work to change settings. Or there is open field
for research of settings for algorithms itself – either by heuristic methods, or to
use other evolutionary algorithms to tune their parameters.

6.3.2. Comments to behaviour of new algorithms itself

To show the success of the algorithms besides graphs; the results are also

shown in the following tables (Table 6.9 - Table 6.24). For each case (2, 20 or
100 dimensional space) the minimal values were found in the final population.
From this 100 values minimal, maximal and average value for each of 4
algorithms were counted.

-78-

Table 6.9: 1st De Jong’s function

 Alg. 1 Alg. 2 Alg. 3 SOMAATO

Minimum 6.84058*10^-54 2.6887*10^-42 6.17178*10^-36 9.66931*10^-42

Maximum 7.99154*10^-48 1.1667*10^-36 9.46824*10^-30 7.13651*10^-36

2

DIM

Average 3.16793*10^-49 4.18871*10^-38 2.40994*10^-31 1.10491*10^-37

Minimum 1.82206*10^-6 0.0000621393 0.000624075 0.0000526722

Maximum 0.000011683 0.000237911 0.00267865 0.000252083

20

DIM

Average 4.84876*10^-6 0.000133213 0.00143861 0.00012626

Minimum 33.8511 2.47579 7.08902 2.48426

Average 48.3372 4.32738 10.6768 4.25156

100

DIM

Maximum 42.9626 3.37319 8.85669 3.16593

Table 6.10: 2nd De Jong’s function

 Alg. 1 Alg. 2 Alg. 3 SOMAATO

Minimum 4.9499*10^-7 4.05763*10^-17 2.88213*10^-15 2.2027*10^-18

Maximum 0.00632326 3.01539*10^-12 3.75052*10^-8 1.29338*10^-11

2

DIM

Average 0.000471306 1.31109*10^-13 9.66692*10^-10 5.15334*10^-13

Minimum 12.4956 10.7737 10.1272 10.128

Maximum 23.0267 16.7656 18.6797 16.7789

20

DIM

Average 17.8876 14.965 15.978 14.4295

Minimum 1378.75 241.526 391.334 266.519

Average 1861.5 472.805 614.45 457.46

100

DIM

Maximum 1667.85 330.225 494.85 342.516

-79-

Table 6.11: 3rd De Jong’s function

 Alg. 1 Alg. 2 Alg. 3 SOMAATO

Minimum 1.24955*10^-27 3.5426*10^-22 1.07207*10^-18 4.82185*10^-22

Maximum 8.96953*10^-25 1.03514*10^-19 3.75781*10^-16 2.95776*10^-19

2

DIM

Average 8.06571*10^-26 1.45729*10^-20 3.2283*10^-17 2.26685*10^-20

Minimum 0.0013398 0.00320009 0.0119396 0.00261852

Maximum 0.00271373 0.00577972 0.0241444 0.00564708

20

DIM

Average 0.00201386 0.00440167 0.0174949 0.004026

Minimum 15.6232 3.05624 5.73294 3.16925

Average 18.8215 3.99875 7.25107 3.99408

100

DIM

Maximum 17.4289 3.5365 6.39571 3.58527

Table 6.12: 4th De Jong’s function

 Alg. 1 Alg. 2 Alg. 3 SOMAATO

Minimum 4.4845*10^-109 4.70679*10^-83 1.05796*10^-70 1.08294*10^-85

Maximum 9.29256*10^-97 8.45534*10^-75 1.70096*10^-61 6.2068*10^-74

2

DIM

Average 1.07945*10^-98 5.10371*10^-76 5.95297*10^-63 1.02549*10^-75

Minimum 1.51524*10^-14 8.08079*10^-10 6.5603*10^-8 6.27137*10^-10

Maximum 2.54052*10^-12 1.5412*10^-8 1.19687*10^-6 1.14606*10^-8

20

DIM

Average 5.94632*10^-13 5.8657*10^-9 2.94375*10^-7 4.56433*10^-9

Minimum 9.64008 0.224742 0.929832 0.197471

Average 16.8637 0.643675 2.59482 0.59221

100

DIM

Maximum 13.6604 0.354862 1.47562 0.334238

-80-

Table 6.13: Rastrigin’s function

 Alg. 1 Alg. 2 Alg. 3 SOMAATO

Minimum -400. -400. -400. -400.

Maximum -400. -400. -400. -400.

2

DIM

Average -400. -400. -400. -400.

Minimum -39093.5 -39984.5 -39714.1 -39969.7

Maximum -38047.3 -39390. -38791.1 -39337.1

20

DIM

Average -38617.2 -39808.5 -39264.4 -39846.3

Minimum -441350. -764206. -698468. -761364.

Average -372123. -695043. -611882. -700528.

100

DIM

Maximum -406800. -731852. -647676. -728513.

Table 6.14: Schwefel’s function

 Alg. 1 Alg. 2 Alg. 3 SOMAATO

Minimum -837.966 -837.966 -837.966 -837.966

Maximum -837.966 -837.966 -837.966 -837.966

2

DIM

Average -837.966 -837.966 -837.966 -837.966

Minimum -8354.52 -8379.46 -8376.91 -8379.39

Maximum -7953.3 -8378.27 -8365.21 -8376.88

20

DIM

Average -8168.74 -8379.06 -8373.98 -8378.77

Minimum -24743.3 -33298.5 -30765.1 -33726.4

Average -21820.6 -30480.2 -27988. -30663.5

100

DIM

Maximum -22875.9 -31852.3 -29258.7 -32152.6

-81-

Table 6.15: Griewangk’s function

 Alg. 1 Alg. 2 Alg. 3 SOMAATO

Minimum 7.88258*10^-15 0. 0. 0.

Maximum 0.00739606 0. 0. 0.

2

DIM

Average 0.00040858 0. 0. 0.

Minimum 0.000104046 0.00144764 0.0235396 0.00214144

Maximum 0.00565715 0.0303911 0.112688 0.0276332

20

DIM

Average 0.00114136 0.00781872 0.0576792 0.00824393

Minimum 4.81464 1.24312 1.71041 1.25355

Average 5.83553 1.486 2.06934 1.41581

100

DIM

Maximum 5.28724 1.31854 1.85161 1.32937

Table 6.16: Sine Envelope Sine Wave function

 Alg. 1 Alg. 2 Alg. 3 SOMAATO

Minimum -1.4915 -1.4915 -1.4915 -1.4915

Maximum -1.4915 -1.4915 -1.4915 -1.4915

2

DIM

Average -1.4915 -1.4915 -1.4915 -1.4915

Minimum -27.4598 -28.0079 -27.7075 -27.9034

Maximum -26.2147 -27.3285 -26.5981 -26.9732

20

DIM

Average -26.8827 -27.666 -27.1445 -27.6299

Minimum -86.6907 -109.765 -103.331 88.3073

Average -81.9419 -103.621 -97.0011 105.281

100

DIM

Maximum -84.1054 -106.933 -100.009 98.189

-82-

Table 6.17: Stretched V sine wave function - Ackley

 Alg. 1 Alg. 2 Alg. 3 SOMAATO

Minimum 0.000287748 3.32245*10^-9 1.75195*10^-8 1.54957*10^-9

Maximum 0.0151492 2.29097*10^-7 8.09508*10^-6 6.20052*10^-7

2

DIM

Average 0.00412367 3.98908*10^-8 9.96666*10^-7 4.74844*10^-8

Minimum 6.01572 1.65993 3.02977 1.45253

Maximum 12.2744 2.72404 5.05216 2.74354

20

DIM

Average 9.82864 2.13613 4.01447 2.08252

Minimum 213.189 89.708 112.611 87.4909

Average 236.091 104.556 133.619 105.114

100

DIM

Maximum 225.393 96.8063 125.024 96.469

Table 6.18: Ackley test function

 Alg. 1 Alg. 2 Alg. 3 SOMAATO

Minimum -2.60065 -2.60065 -2.60065 -2.60065

Maximum -2.60065 -2.60065 -2.60065 -2.60065

2

DIM

Average -2.60065 -2.60065 -2.60065 -2.60065

Minimum -30.8076 -31.0918 -30.9659 -31.0887

Maximum -29.5595 -30.0059 -29.2372 -30.284

20

DIM

Average -30.165 -30.9384 -30.2435 -30.9482

Minimum 294.8 -47.3369 37.991 -47.8128

Average 350.958 -9.5177 96.2447 -8.01849

100

DIM

Maximum 325.895 -29.0134 59.3382 -27.3333

-83-

Table 6.19: Ackley function

 Alg. 1 Alg. 2 Alg. 3 SOMAATO

Minimum -4.4409*10^-16 -4.4409*10^-16 4.44089*10^-16 -4.4409*10^-16

Maximum -4.4409*10^-16 -4.4409*10^-16 3.15303*10^-14 -4.4409*10^-16

2

DIM

Average -4.4409*10^-16 -4.4409*10^-16 4.88498*10^-15 -4.4409*10^-16

Minimum 0.167231 0.237852 0.944661 0.220695

Maximum 0.508953 0.561074 2.12588 0.483481

20

DIM

Average 0.29824 0.362845 1.46952 0.359461

Minimum 1017.82 323.812 474.656 323.165

Average 1107.55 396.045 570.201 384.988

100

DIM

Maximum 1067.62 358.892 513.635 357.177

Table 6.20: Egg Holder function

 Alg. 1 Alg. 2 Alg. 3 SOMAATO

Minimum -959.44 -959.641 -959.641 -959.641

Maximum -894.573 -956.915 -899.463 -956.897

2

DIM

Average -948.715 -957.569 -956.261 -957.571

Minimum -12555.8 -14371.8 -13357.8 -13820.1

Maximum -10645.8 -11861.7 -10954.2 -11901.

20

DIM

Average -11388.7 -12904.6 -12095.3 -12832.4

Minimum -33656.1 -31642.2 -30322.2 -32689.2

Average -28690.5 -27651.5 -26928.6 -27872.9

100

DIM

Maximum -31210.6 -29342.3 -28592.4 -29488.6

-84-

Table 6.21: Rana‘s function

 Alg. 1 Alg. 2 Alg. 3 SOMAATO

Minimum -500.794 -500.802 -500.802 -500.802

Maximum -477.938 -480.662 -494.164 -489.806

2

DIM

Average -495.752 -499.691 -499.544 -499.354

Minimum -7626.53 -7705.18 -7346.31 -7659.59

Maximum -6481.92 -6885.89 -6686.58 -6833.08

20

DIM

Average -6883.87 -7211.28 -6983.28 -7191.25

Minimum -21918.9 -19703.8 -19309.7 -19732.9

Average -18861.4 -17464.9 -17167.6 -17538.3

100

DIM

Maximum -19801.7 -18483. -18181.4 -18360.5

Table 6.22: Pathological function

 Alg. 1 Alg. 2 Alg. 3 SOMAATO

Minimum 7.52946*10^-9 1.44329*10^-14 1.93361*10^-11 0.

Maximum 0.0000836098 0.0000705348 0.000251965 0.0000330035

2

DIM

Average 8.09481*10^-6 2.30942*10^-6 7.72052*10^-6 1.40815*10^-6

Minimum 2.87102 3.2142 3.51303 3.25255

Maximum 4.22087 4.43468 4.72801 4.33404

20

DIM

Average 3.55241 3.93989 4.2 3.88867

Minimum 36.1381 37.6409 38.1266 37.9414

Average 38.4161 39.5239 39.922 39.4065

100

DIM

Maximum 37.5256 38.8196 39.1873 38.7657

-85-

Table 6.23: Michalewicz‘s function

 Alg. 1 Alg. 2 Alg. 3 SOMAATO

Minimum -1.8013 -1.8013 -1.8013 -1.8013

Maximum -1.8013 -1.8013 -1.8013 -1.8013

2

DIM

Average -1.8013 -1.8013 -1.8013 -1.8013

Minimum -19.8189 -19.8187 -19.8176 -19.8187

Maximum -19.8111 -19.8163 -19.796 -19.817

20

DIM

Average -19.8183 -19.8181 -19.8127 -19.8182

Minimum -71.9513 -92.2251 -87.684 -91.3573

Average -67.2357 -88.3072 -83.8975 -88.3404

100

DIM

Maximum -69.0707 -89.8767 -85.7371 -90.0936

Table 6.24: Master’s cosine wave function

 Alg. 1 Alg. 2 Alg. 3 SOMAATO

Minimum -1. -1. -1. -1.

Maximum -0.961233 -1. -1. -1.

2

DIM

Average -0.998699 -1. -1. -1.

Minimum -15.953 -18.1463 -16.8458 -17.9085

Maximum -14.0282 -14.9099 -14.3835 -14.7218

20

DIM

Average -14.7589 -16.3618 -15.4408 -16.2809

Minimum -37.9154 -46.927 -40.2639 -45.1454

Average -31.6508 -36.7738 -33.7774 -37.8305

100

DIM

Maximum -34.3427 -40.5856 -36.7087 -40.9226

-86-

As the previous tables show it is hard to outline which algorithm is the best.
The winners for each problem are divided according to dimensions and can be
seen in Table 6.25.

Table 6.25: Winner for each benchmark function.

 Algorithm 1 Algorithm 2 Algorithm 3 SOMAATO
2 D 1, 3, 4, 5, 6, 8,

10, 11, 12, 15,
16

5, 6, 7, 8, 10,
11, 12, 13, 15,
16

5, 6, 7, 8, 10,
11, 12, 13, 15,
16

2, 5, 6, 7, 8, 9,
10, 11, 12, 13,
14, 15, 16

20 D 1, 3, 4, 7, 11,
14, 15

5, 6, 8, 10, 12,
13, 16

2 9

100
D

12, 13, 14 1, 2, 3, 5, 7, 8,
15, 16,

 4, 6, 9, 10, 11

The numbers are for each benchmark problem as follows: 1- 1st De Jong’s
function, 2 - 2nd De Jong’s function, 3 - 3rd De Jong’s function, 4 - 4th De
Jong’s function, 5 - Rastrigin’s function, 6 - Schwefel’s function, 7 -
Griewangk’s function, 8 - Sine Envelope Sine Wave function, 9 - Stretched V
sine wave function - Ackley, 10 - Ackley test function, 11 - Ackley function,
12 - Egg Holder function, 13 - Rana‘s function, 14 - Pathological function, 15
- Michalewicz‘s function, 16 - Master’s cosine wave function. If the same
number appears in more cells on the same row it means that algorithms
finished in the same cost value.

The algorithms compete between themselves. It is also almost impossible to

say that one algorithm was the best one for the specific task. In some cases one
algorithm was better in 20 dimensional problem but the second algorithm was
better in 100 dimensions as is clearly visible from Table 6.25.

There is also seen that Algorithm 2 was the most successful in different
tasks compared to Algorithm 3 which has not won in higher dimensions
except one case.

The tables (Table 6.9 - Table 6.24 and Table 6.25) also showed that in 2
dimension version of benchmark functions there was no problem in finding the
global extreme. In most case all four algorithms finished in the same cost

-87-

value. Some difficulties appeared in higher dimensions. In 20 dimenional
space either Algorithm 1 or Algorithm 2 was the winner. In 100 dimension the
most successful algorithm was Algorithm 2.

The differences in quality of solutions might be also given by different cost
functions evaluations. These was given by the setting in the AP as we
mentioned above. We were interested in behaviour according to the settings in
AP and nothing was changed. The number of cost function evaluations for the
performed cases are in the Table 6.26. As can be seen the Algorithm 2 has the
biggest number compared to Algorithm 3 and SOMAATO which had only
around a quarter. As described above, there is the probably connection
between these results and cost function evaluations. Despite this fact,
SOMAATO was able to win in several cases even with less CFE.

Table 6.26: Cost function evaluations for performed algorithms

Algorithm 1 241414.

Algorithm 2 321868.

Algorithm 3 80554.5

SOMAATO 80454.5

The cost function evaluations is the most discussed parameter because we

need to have fast convergence with very high quality and therefore to have
CFE as less as possible. We might also setup higher number of iterations
because as can be seen even in graphs in appendix, most of 100 dimension
simulations showed that more cost functions evaluations could lead to better
results. The convergence was not finished.

-88-

6.3.3. Possible approach to giving a name to new
algorithms

These were first simulations resulting in a small number of algorithms.

Probably the system of giving names will be the sequence number. Later some
of algorithms might get an additional name according the special properties.
The future work suppose to prepare webpages with the description of the
obtaining new optimization algorithms with evolutionary attributes where one
of the sections will be also the list of generated algorithms with the sequence
number and the notation of the algorithm.

-89-

CONCLUSIONS AND DISCUSSIONS
The main aim of the dissertation was to show that it is possible to create

new optimization algorithms, probably of evolutionary character, by means of
symbolic regression and tools of artificial intelligence.

The way to the main simulations went through several tasks which should
prove that Analytic Programming which was chosen is able to work with
symbolic regression and with linguistic terms as well as with numerical
values.

Firstly, approximations of data were carried out with 4 study cases and 4
evolutionary algorithms as the optimizations tools which found the best fitting
curve. To the group of selected cases for fitting data belongs: Quintic, Sextic
problems as the representatives of polynomial functions of 5th and 6th order.
The other two functions – Three Sine and Four Sine - contained also
trigonometric functions Sin. However, all 4 functions were approximated by
simple mathematical functions and operators like plus, minus, multiply,
division and variable and constants. No trigonometric functions were inside.
Although AP was able to find suitable curves which fitted data as well as
possible, almost without any error. This was presented in 2003 [20].

The second task worked with operators for design of logical electronic
circuits. We carried tasks from literature out as 3 to 6 – even parity and 3 to 6
– symmetry problems. In this task we proved that the AP is able to work with
operators as AND, NAND, OR and inputs to design electronic circuit
according requested behaviour which was give by truth tables. The article in a
journal concerned to this topic was published in 2004 [22].

Third case was to show that we can use even functions for movement and
synthesize a suitable trajectory for a robot. The robot has an aim to find a pick
up all food on the defined grid. In this problem we even found better solutions
then GP. At least, in the literature Koza give as an suitable example, which
should be under requested number of steps, solution which does not fit it at all.
We reached several times the requested number of steps. The paper was
accepted in the international congress in 2005 [23] and also at the big
conference concerned to evolutionary computation in 2006 [24].

The results of above described problems were comparable with known tool
GP, but the performance was faster, probably because the AP can use arbitrary

-90-

evolutionary algorithms, not only genetic algorithms. This led to the choice of
AP for further process of metaevolution – synthesis of evolutionary algorithms
by means of symbolic regression.

There were performed other tasks like synthesis of neural networks [25],
chaos synthesis [26], or solutions of differential equations [18] besides the
presented work.

This work was concentrated into synthesis of optimization algorithms
probably of evolutionary character. The first steps were published in Mendel
2006 conference [48] and ECMS 2007 [50] where the paper was awarded best
paper.

Firstly, it was necessary to define operators of evolutionary algorithms. In
first steps we have tried only to obtain one separated algorithm back into the
whole. As described in section 6.1 we were successful because we obtained
the differential evolution back. We also obtained another version of
differential evolution as was found in later analysis. Performance of both
algorithms are in the graphs, the new one had faster convergence in unimodal
functions but slower in multimodal function.

In the next simulations, a cost function was adopted. To avoid problems
with different orders of cost value of benchmark function which were in cost
function in AP, counting the values was changed. Instead of direct number we
used difference from global extreme. The cost values then were differences
between achieved value and the real extreme value. Both cases then should
reach the zero.

Consequently to that the penalization was added inside the cost function.
The penalization supported less cost function evaluations then the average of
SOMA and DE performance was found.

We found the original DE and SOMA algorithm as well as others. But that
case was carried out only in 2 dimension problems. The real world, compared
to that, needs more dimensional systems. Therefore the next step was carried
out using 20 dimensional system of benchmark functions.

From these simulations, we obtained 4 algorithms which fulfil the request
on cost function evaluations. Because the two benchmark functions used in AP
were not enough to say that the algorithms are suitable, we carried out a big
amount of simulations on 16 test functions, in 3 study cases – 2, 20 and 100
dimension spaces for all 4 algorithms. Each of this cases was 100 repeated.

-91-

The total amount of simulations were 19 200. The simulations took from
minutes in the 2 dimension space to long hours – even 26 in 100 dimension
space. All simulations were carried in Mathematica 5.2 environment.

The results are shown in tables and graphs in appendix. From that it is not
possible to say if some algorithm is the winner. They compete not only in
benchmark functions but even in the different dimensions in the frame of one
of them. But on previous descriptions can be stated that all 4 algorithms were
successful in 2 dimensions and all found the extreme. In higher dimensions
there was a big competition, on the other hand all algorithms show the ability
to optimize multimodal functions.

Settings for algorithms was and has been the biggest question which is hard
to answer exactly. Therefore there will be open research field to tune the
algorithm parameters and their comparison with others.

The total number of cost function evaluations during whole doctoral study
in described cases was 4.011 milliards. The number consists of 4 millions of
simulations for approximation data, 3.2 millions for Boolean parity and
symmetry problems, 10.5 millions settings a trajectory for artificial ant, 150
millions during searching of new algorithms, 3840 millions during testing
benchmark functions in three dimensions.

As the above described approach showed the AP is able to create new
algorithms, however, this is not the only one of the point of view to synthesis
of evolutionary algorithms by means of symbolic regression, i.e. to collect
operators of known algorithms and try to create something new from them.

Another approach is to go to the lower level of creating the algorithm and
this is to create some operator itself. This might bring also new robust
optimization algorithms to the world. All might be added in future research in
this field because optimization algorithms of high quality and fast convergence
to the global extreme will be the most desired request in the field of
optimization.

-92-

The main goals stated at the beginning of this thesis are fulfilled in previous
chapters in the following way.

1. To prove that Analytic Programming is able to do symbolic

regression and to prove that Analytic Programming is also able to
work with linguistic terms not only with numeric values or
mathematical operators

The experimental part showed in chapters dedicated to approximation of
data (section 5.1), design of electronic circuits (section 5.2) and setting of a
suitable trajectory for a robot (section 5.3) that AP is working and able to
perform symbolic regression. This goal has been reached.

2. - to try that a creation of a new optimization algorithms, probably of

evolutionary character, is possible with AP
 - to define several operators of evolutionary algorithms (like
crossover, mutation, perturbation from SOMA, and others) which will
be used as simple functions for AP
 - to define restrictions in Cost Function as inclusion of number of cost
function evaluation into quality of solution
 - to try to create an evolutionary algorithm which will be at least as

robust as some current algorithms are and further to compare its
behaviour with current ones

The section 7 describes this points in detail. There is the progress from the

first steps to the final results. This could be considered the main result of the
thesis.

3. to give comparisons between created and current evolutionary

algorithms
The last goal is fulfilled within 96 pages of graphs in appendix and 8 pages

of tables in section 6.3.2 where results from 19 200 simulations are included.
These point seems to be fulfilled too.

-93-

REFERENCES
[1] ZELINKA I., Umělá inteligence v problémech globální

optimalizace, BEN, Praha, 2002, ISBN 80-7300-069-5
[2] KVASNIČKA V., POSPÍCHAL J., TIŇO P., Evolučné

algoritmy, STU Bralislava, 2000, ISBN 80-227-1377-5
[3] DAWIS L., Handbook of Genetic Algorithms, International

Thomson Computer Press, 1996, ISBN 1850328250
[4] PRICE K., STORN R. M., LAMPINEN J. A., Differential

Evolution : A Practical Approach to Global Optimization (Natural Computing
Series), Springer; 1 edition , 2005, ISBN: 3540209506

[5] ZELINKA I., „SOMA – Self Organizing Migrating Algorithm“,
In: BABU B.V., ONWUBOLU G. (eds), New Optimization Techniques in
Engineering, Springer-Verlag, 2004, ISBN 3-540-20167X

[6] EBERHART R., KENNEDY J., Swarm Intelligence (The
Morgan Kaufmann Series in Artificial Intelligence), Morgan Kaufmann, 2001,
ISBN 1558605959

[7] DORIGO M., Ant Colony Optimization and Swarm
Intelligence, Springer, 2006, ISBN 3540226729

[8] FARMER J.D., PACKARD N., PERELSON A., "The immune
system, adaptation and machine learning", Physica D, vol. 2, pp. 187—204,
1986

[9] RUSSEL S. J., NORVIG P., Artificial Intelligence: Modern
Approach, Prentice Hall, 1995, ISBN: 0131038052

[10] KIRKPATRICK S., GELATT C. D., VECCHI M. P.,
Optimization by Simulated Annealing, Science, 13 May 1983, Volume 220,
Number 4598, p. 671 – 680

[11] BACK T., FOGEL D. B., MICHALEWICZ Z., Handbook of
evolutionary algorithms, Oxford University Press, 1997, ISBN 0750303921

[12] KOZA J. R., Genetic Programming, MIT Press, 1998, ISBN 0-
262-11189-6

[13] KOZA J. R. ET AL., Genetic Programming III; Darwinian
Invention and problem Solving, Morgan Kaufmann Publisher, 1999, ISBN 1-
55860-543-6

[14] www.genetic-programming.org

-94-

[15] O’NEILL M., RYAN C., Grammatical Evolution. Evolutionary
Automatic Programming in an Arbitrary Language, Kluwer Academic
Publishers, 2003, ISBN 1402074441

[16] www.grammatical-evolution.org
[17] O'SULLIVAN J., RYAN C., An Investigation into the Use of

Different Search Strategies with Grammatical Evolution, Proceedings of the
5th European Conference on Genetic Programming, p.268 - 277, 2002,
Springer-Verlag London, UK, ISBN:3-540-43378-3

[18] ZELINKA I., Analytic Programming by Means of Soma
Algorithm. ICICIS’02, First International Conference on Intelligent
Computing and Information Systems, Egypt, Cairo, 2002, ISBN 977-237-172-
3

[19] ZELINKA I., Analytic Programming by Means of Soma
Algorithm. Mendel ’02, In: Proc. 8th International Conference on Soft
Computing Mendel’02, Brno, Czech Republic, 2002, 93-101., ISBN 80-214-
2135-5

[20] ZELINKA I., OPLATKOVA Z., Analytic programming –
Comparative Study. CIRAS’03, The second International Conference on
Computational Intelligence, Robotics, and Autonomous Systems, Singapore,
2003, ISSN 0219-6131

[21] ZELINKA I.,OPLATKOVA Z, NOLLE L., Boolean Symmetry
Function Synthesis by Means of Arbitrary Evolutionary Algorithms-
Comparative Study, ESM '2004, In: Proc. 18th European Simulation
Multiconference, Magdeburg, Germany 2004

[22] ZELINKA I.,OPLATKOVA Z, NOLLE L., Boolean Symmetry
Function Synthesis by Means of Arbitrary Evolutionary Algorithms-
Comparative Study, International Journal of Simulation Systems, Science and
Technology, Volume 6, Number 9, August 2005, pages 44 - 56, ISSN: 1473-
8031, online http://ducati.doc.ntu.ac.uk/uksim/journal/Vol-6/No.9/cover.htm,
ISSN: 1473-804x

[23] OPLATKOVA Z., Optimal Trajectory of Robots Using
Symbolic Regression, In: CD-ROM of Proc. 56th International Astronautical
Congress 2005, Fukuoka, Japan, 2005, paper nr. IAC-05-C1.4.07

-95-

[24] OPLATKOVA Z., ZELINKA I., Investigation on Artificial Ant
using Analytic Programming, GECCO 2006, Seattle, Washington, USA, 8 –
12 July 2006, ISBN 1-59593-186-4

[25] ZELINKA I., VARACHA P., OPLATKOVA Z., Evolutionary
Synthesis of Neural Network, Mendel 2006 – 12th International Conference
on Softcomputing, Brno, Czech Republic, 31 May – 2 June 2006, pages 25 –
31, ISBN 80-214-3195-4

[26] ZELINKA I., CHEN G., CELIKOVSKY S., Chaos Synthesis
by Means of Symbolic Regression, International Journal of Bifurcation and
Chaos, in print

[27] JOHNSON COLIN G., Artificial immune systems programming
for symbolic regression, In C. RYAN, T. SOULE, M. KEIJZER, E. TSANG,
R. POLI, AND E. COSTA, editors, Genetic Programming: 6th European
Conference, LNCS 2610, p. 345-353, 2003

[28] SALUSTOWICZ R. P., SCHMIDHUBER J., Probabilistic
Incremental Program Evolution, Evolutionary Computation, vol. 5, nr. 2,
1997, pages 123 – 141, MIT Press, ISSN 1063-6560

[29] PATERSON N., Genetic Programming with context sensitive
grammars, doctoral thesis, University of St. Andrews, 2003

[30] PATERSON N., LIVESEY M., Distinguishing genotype and
phenotype in genetic programming, In KOZA, GOLDBERG, FOGEL &
RIOLO, eds. Late Breaking Papers at GP 1996, MIT Press, 1996, ISBN 0-18-
201-031-7

[31] JOHNSON C. G., Artificial Immune System Programming for
Symbolic Regression, Lecture notes in Computer Sciences series, Springer,
Volume 2610/2003, 2003, ISSN 0302-9743.

[32] FERREIRA C., Gene Expression Programming: Mathematical
Modeling by an Artificial Intelligence, Springer, 2006, ISBN: 3540327967

[33] OLTEAN M., GROSAN C., Evolving Evolutionary Algorithms
using Multi Expression Programming, The 7th European Conference on
Artificial Life, September 14-17, 2003, Dortmund, Edited by W. Banzhaf (et
al), LNAI 2801, pp. 651-658, Springer-Verlag, Berlin, 2003

[34] STINSTRA E., RENNEN G., TEEUWEN G., Meta-modelling
by symbolic regression and Pareto Simulated Annealing, Tilburg University,
Netherlands, nr. 2006-15, ISSN 0924-7815

-96-

[35] DAVIDSON J.W., SAVIC D.A., WALTERS G.A., Symbolic
and numerical regression: experiments and applications, Informatics and
Computer Science – An international Journal, Vol. 150, Elsevier, USA, 2003,
pages 95 – 117, ISSN:0020-0255

[36] Wikipedia – free encyclopaedia, en.wikipedia.org
[37] HOLLAND J. H., Genetic Algorithms, Scientific American,

July 1992, p. 44 – 50
[38] BEASLEY D., BULL D. R., MARTIN R. R., An Overview of

Genetic Algorithms, Part 1, Fundamentals, University Computing, 1993,
15(2), p. 58 – 69

[39] BEASLEY D., BULL D. R., MARTIN R. R., An Overview of
Genetic Algorithms, Part 2, Research Topics, University Computing, 1993,
15(4), p. 170-181

[40] RATLE A., SEBAG M., Genetic Programming and Domain
Knowledge: Beyond the Limitations of Grammar-Guided Machine Discovery,
Parallel Problem Solving from Nature - PPSN VI, 6th International
Conference, Paris, France, Proceedings. Lecture Notes in Computer Science
1917 Springer 2000, pages 211-220, ISBN 3-540-41056-2

[41] KEIJZER M., Improving Symbolic Regression with Interval
Arithmetic and Linear Scaling, Lectures in Computer Science, Volume 2610,
EuroGP, Springer, 2003, pages 70-82, ISSN: 0302-9743

[42] KEIJZER M., Genetic Programming for Symbolic Regression,
tutorial, Gecco 2006, Seattle, Washington, 2006, ISSN: 0302-9743

[43] REKTORYS K., Variational methods in Engineering Problems
and Problems of Mathematical Physics, Czech edition, 1999, ISBN 80-200-
0714-8

[44] LAMPINEN J., ZELINKA I., New Ideas in Optimization –
Mechanical Engineering Design Optimization by Differential Devolution,
Volume 1. London: McGraw-hill, 1999, 20 p., ISBN 007-709506-5

[45] OŠMERA P., Evolution of Complexity, In: Li Z., Halang W. A.,
Chen G.: Integration of Fuzzy Logic and Chaos Theory, Springer-Verlag,
2006, ISBN: 3-540-26899-5, pages 527 – 578

[46] MAŘÍK V. ET AL., Artificial Intelligence IV., 2003, Academia,
Praha, Czech edition, ISBN 80-200-1044-0

-97-

[47] KOZA J. R., KEANE M. A, STREETER M. J., Evolving
Inventions, Scientific American, February 2003, p. 40-47, ISSN 0036-8733,
(online www.sciam.com)

[48] OPLATKOVA Z., ZELINKA I., Creating evolutionary
algorithms by means of analytic programming – preliminary study, Mendel
2006, Brno, Czech Republic, 31 May – 2 June 2006, pages 19 – 24, ISBN 80-
214-3195-4

[49] BABU, B.V., "Evolutionary Computation - At a Glance",
NEXUS, Annual Magazine of Engineering Technology Association, BITS,
Pilani, pp. 3-7, 2001

[50] OPLATKOVA Z., ZELINKA I., Creating evolutionary
algorithms by means of analytic programming – design of new cost function,
ECMS 2007, Praha, 3 – 6 June 2007, pages 271 – 276, ISBN 978-0-9553018-
2-7

-98-

7. APPENDIX - TEST FUNCTIONS
7.1. Sphere model, 1st De Jong‘s function – 2D

!

f
1
x() = xi

2

i=1

n

"

-99-

Algorithm 1

0 20 40 60 80 100

0

2.¥10
- 48

4.¥10- 48

6.¥10- 48

8.¥10
- 48

Hit 0 20 40 60 80 100

0

5.¥10
- 40

1.¥10- 39

1.5¥10
- 39

Hit

Algorithm 2

0 20 40 60 80 100

0

2.¥10
- 37

4.¥10- 37

6.¥10
- 37

8.¥10- 37

1.¥10- 36

Hit 0 20 40 60 80 100

0

1.¥10- 22

2.¥10- 22

3.¥10
- 22

4.¥10
- 22

5.¥10
- 22

6.¥10- 22

7.¥10- 22

Hit

Algorithm 3

0 20 40 60 80 100

0

2.¥10
- 30

4.¥10
- 30

6.¥10- 30

8.¥10- 30

Hit 0 20 40 60 80 100

0

1.¥10- 15

2.¥10- 15

3.¥10
- 15

4.¥10
- 15

5.¥10- 15

6.¥10- 15

Hit

SOMAATO

0 20 40 60 80 100

0

1.¥10
- 36

2.¥10
- 36

3.¥10
- 36

4.¥10
- 36

5.¥10
- 36

6.¥10
- 36

7.¥10
- 36

Hit 0 20 40 60 80 100

0

2.¥10
- 22

4.¥10
- 22

6.¥10
- 22

8.¥10
- 22

1.¥10- 21

Hit

-100-

7.2. Sphere model, 1st De Jong‘s function – 20D

Algorithm 1

0 20 40 60 80 100

0

2.¥10- 6

4.¥10- 6

6.¥10- 6

8.¥10
- 6

0.00001

Hit
0 20 40 60 80 100

0.0000

0.0002

0.0004

0.0006

0.0008

Hit

-101-

Algorithm 2

0 20 40 60 80 100

0.00000

0.00005

0.00010

0.00015

0.00020

Hit 0 20 40 60 80 100

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

Hit

Algorithm 3

0 20 40 60 80 100

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Hit 0 20 40 60 80 100

0.000

0.005

0.010

0.015

0.020

0.025

Hit

SOMAATO

0 20 40 60 80 100

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

Hit 0 20 40 60 80 100

0.0002

0.0004

0.0006

0.0008

0.0010

Hit

-102-

7.3. Sphere model, 1st De Jong‘s function – 100D

Algorithm 1

0 20 40 60 80 100

0

10

20

30

40

Hit 0 20 40 60 80 100

40

50

60

70

80

90

100

Hit

-103-

Algorithm 2

0 20 40 60 80 100

0

1

2

3

4

Hit 0 20 40 60 80 100

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Hit

Algorithm 3

0 20 40 60 80 100

0

2

4

6

8

10

Hit 0 20 40 60 80 100

8

10

12

14

16

18

Hit

SOMAATO

0 20 40 60 80 100

0

1

2

3

4

Hit 0 20 40 60 80 100

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Hit

-104-

7.4. Rosenbrock‘s saddle, 2nd De Jong‘s function
– 2D

!

f
2
x() = 100 " xi+1 + xi

2()
2

i=1

n#1

$ + 1# xi()
2

-105-

Algorithm 1

0 20 40 60 80 100

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Hit 0 20 40 60 80 100

0

1

2

3

4

5

6

Hit

Algorithm 2

0 20 40 60 80 100

0

5.¥10
- 13

1.¥10- 12

1.5¥10- 12

2.¥10- 12

2.5¥10- 12

3.¥10
- 12

Hit 0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Hit

Algorithm 3

0 20 40 60 80 100

0

2.¥10
- 30

4.¥10
- 30

6.¥10- 30

8.¥10- 30

Hit 0 20 40 60 80 100

0

1.¥10- 15

2.¥10- 15

3.¥10
- 15

4.¥10
- 15

5.¥10- 15

6.¥10- 15

Hit

SOMAATO

0 20 40 60 80 100

0

2.¥10
- 12

4.¥10
- 12

6.¥10
- 12

8.¥10
- 12

1.¥10
- 11

1.2¥10
- 11

Hit 0 20 40 60 80 100

0

1

2

3

4

5

6

Hit

-106-

7.5. Rosenbrock‘s saddle, 2nd De Jong‘s function
– 20D

Algorithm 1

0 20 40 60 80 100

0

5

10

15

20

Hit 0 20 40 60 80 100

50

100

150

200

250

Hit

-107-

Algorithm 2

0 20 40 60 80 100

0

5

10

15

Hit 0 20 40 60 80 100

50

100

150

Hit

Algorithm 3

0 20 40 60 80 100

0

5

10

15

Hit 0 20 40 60 80 100

50

100

150

Hit

SOMAATO

0 20 40 60 80 100

0

5

10

15

Hit 0 20 40 60 80 100

20

40

60

80

100

120

140

Hit

-108-

7.6. Rosenbrock‘s saddle, 2nd De Jong‘s function
– 100D

Algorithm 1

0 20 40 60 80 100

0

500

1000

1500

Hit 0 20 40 60 80 100

1500

2000

2500

3000

3500

4000

Hit

-109-

Algorithm 2

0 20 40 60 80 100

0

100

200

300

400

Hit 0 20 40 60 80 100

250

300

350

400

450

500

550

600

Hit

Algorithm 3

0 20 40 60 80 100

0

100

200

300

400

500

600

Hit 0 20 40 60 80 100

400

500

600

700

800

900

1000

Hit

SOMAATO

0 20 40 60 80 100

0

100

200

300

400

Hit 0 20 40 60 80 100

300

350

400

450

500

550

600

Hit

-110-

7.7. 3rd De Jong‘s function – 2D

!

f x() = xi
i=1

Dim

"

-111-

Algorithm 1

0 20 40 60 80 100

0

2.¥10- 25

4.¥10
- 25

6.¥10
- 25

8.¥10
- 25

Hit 0 20 40 60 80 100

0

5.¥10- 21

1.¥10- 20

1.5¥10
- 20

2.¥10
- 20

Hit

Algorithm 2

0 20 40 60 80 100

0

2.¥10
- 20

4.¥10
- 20

6.¥10
- 20

8.¥10
- 20

1.¥10
- 19

Hit 0 20 40 60 80 100

0

2.¥10- 12

4.¥10
- 12

6.¥10- 12

8.¥10
- 12

1.¥10
- 11

Hit

Algorithm 3

0 20 40 60 80 100

0

5.¥10- 17

1.¥10- 16

1.5¥10
- 16

2.¥10- 16

2.5¥10
- 16

3.¥10
- 16

3.5¥10- 16

Hit 0 20 40 60 80 100

0

2.¥10
- 9

4.¥10
- 9

6.¥10- 9

8.¥10
- 9

1.¥10
- 8

1.2¥10
- 8

1.4¥10- 8

Hit

SOMAATO

0 20 40 60 80 100

0

5.¥10
- 20

1.¥10- 19

1.5¥10
- 19

2.¥10- 19

2.5¥10
- 19

3.¥10
- 19

Hit 0 20 40 60 80 100

0

5.¥10- 13

1.¥10
- 12

1.5¥10
- 12

2.¥10- 12

2.5¥10- 12

3.¥10
- 12

Hit

-112-

7.8. 3rd De Jong‘s function – 20D

Algorithm 1

0 20 40 60 80 100

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Hit 0 20 40 60 80 100

0.005

0.010

0.015

0.020

Hit

-113-

Algorithm 2

0 20 40 60 80 100

0.000

0.001

0.002

0.003

0.004

0.005

Hit 0 20 40 60 80 100

0.004

0.006

0.008

0.010

0.012

0.014

Hit

Algorithm 3

0 20 40 60 80 100

0.000

0.005

0.010

0.015

0.020

Hit 0 20 40 60 80 100

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Hit

SOMAATO

0 20 40 60 80 100

0.000

0.001

0.002

0.003

0.004

0.005

Hit 0 20 40 60 80 100

0.004

0.006

0.008

0.010

0.012

Hit

-114-

7.9. 3rd De Jong‘s function – 100D

Algorithm 1

0 20 40 60 80 100

0

5

10

15

Hit 0 20 40 60 80 100

16

18

20

22

24

26

28

Hit

-115-

Algorithm 2

0 20 40 60 80 100

0

1

2

3

4

Hit 0 20 40 60 80 100

3.0

3.5

4.0

4.5

5.0

Hit

Algorithm 3

0 20 40 60 80 100

0

1

2

3

4

5

6

7

Hit 0 20 40 60 80 100

6

7

8

9

Hit

SOMAATO

0 20 40 60 80 100

0

1

2

3

4

Hit 0 20 40 60 80 100

3.5

4.0

4.5

5.0

Hit

-116-

7.10. 4th De Jong‘s function – 2D

!

f x() = ixi
4

i=1

Dim

"

-117-

Algorithm 1

0 20 40 60 80 100

0

2.¥10- 97

4.¥10- 97

6.¥10
- 97

8.¥10
- 97

Hit 0 20 40 60 80 100

0

1.¥10- 78

2.¥10
- 78

3.¥10
- 78

4.¥10- 78

5.¥10
- 78

Hit

Algorithm 2

0 20 40 60 80 100

0

2.¥10
- 75

4.¥10- 75

6.¥10
- 75

8.¥10- 75

Hit 0 20 40 60 80 100

0

5.¥10
- 46

1.¥10
- 45

1.5¥10
- 45

2.¥10- 45

2.5¥10
- 45

Hit

Algorithm 3

0 20 40 60 80 100

0

5.¥10- 62

1.¥10
- 61

1.5¥10
- 61

Hit 0 20 40 60 80 100

0

1.¥10- 32

2.¥10- 32

3.¥10- 32

4.¥10- 32

5.¥10- 32

6.¥10- 32

7.¥10- 32

Hit

SOMAATO

0 20 40 60 80 100

0

1.¥10- 74

2.¥10
- 74

3.¥10- 74

4.¥10
- 74

5.¥10
- 74

6.¥10- 74

Hit 0 20 40 60 80 100

0

2.¥10
- 43

4.¥10
- 43

6.¥10
- 43

8.¥10
- 43

1.¥10
- 42

Hit

-118-

7.11. 4th De Jong‘s function – 20D

Algorithm 1

0 20 40 60 80 100

0

5.¥10
- 13

1.¥10
- 12

1.5¥10
- 12

2.¥10
- 12

2.5¥10
- 12

Hit 0 20 40 60 80 100

0

1.¥10
- 10

2.¥10
- 10

3.¥10- 10

4.¥10
- 10

5.¥10- 10

Hit

-119-

Algorithm 2

0 20 40 60 80 100

0

5.¥10- 9

1.¥10
- 8

1.5¥10- 8

Hit
0 20 40 60 80 100

0

1.¥10- 7

2.¥10
- 7

3.¥10
- 7

4.¥10- 7

5.¥10
- 7

Hit

Algorithm 3

0 20 40 60 80 100

0

2.¥10
- 7

4.¥10
- 7

6.¥10- 7

8.¥10
- 7

1.¥10- 6

1.2¥10
- 6

Hit 0 20 40 60 80 100

0

0.00001

0.00002

0.00003

0.00004

0.00005

Hit

SOMAATO

0 20 40 60 80 100

0

2.¥10
- 9

4.¥10- 9

6.¥10
- 9

8.¥10- 9

1.¥10
- 8

Hit 0 20 40 60 80 100

0

1.¥10
- 7

2.¥10- 7

3.¥10- 7

Hit

-120-

7.12. 4th De Jong‘s function – 100D

Algorithm 1

0 20 40 60 80 100

0

5

10

15

Hit 0 20 40 60 80 100

10

20

30

40

50

60

70

80

Hit

-121-

Algorithm 2

0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Hit 0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

Hit

Algorithm 3

0 20 40 60 80 100

0.0

0.5

1.0

1.5

2.0

2.5

Hit
0 20 40 60 80 100

1

2

3

4

5

Hit

SOMAATO

0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Hit 0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

Hit

-122-

7.13. Rastrigin’s function – 2D

!

f x() =10Dim + xi
2

"10cos 2#xi()()
i=1

Dim

$

-123-

Algorithm 1

0 20 40 60 80 100

- 400

- 300

- 200

- 100

0

Hit 0 20 40 60 80 100

- 400

- 380

- 360

- 340

- 320

- 300

Hit

Algorithm 2

0 20 40 60 80 100

- 400

- 300

- 200

- 100

0

Hit 0 20 40 60 80 100

- 400

- 395

- 390

- 385

- 380

- 375

Hit

Algorithm 3

0 20 40 60 80 100

- 400

- 300

- 200

- 100

0

Hit 0 20 40 60 80 100

- 400

- 390

- 380

- 370

- 360

Hit

SOMAATO

0 20 40 60 80 100

- 400

- 300

- 200

- 100

0

Hit 0 20 40 60 80 100

- 400

- 395

- 390

- 385

- 380

- 375

Hit

-124-

7.14. Rastrigin’s function – 20D

Algorithm 1

0 20 40 60 80 100

- 30000

- 20000

- 10000

0

Hit 0 20 40 60 80 100

- 39000

- 38000

- 37000

- 36000

- 35000

- 34000

- 33000

- 32000

Hit

-125-

Algorithm 2

0 20 40 60 80 100

- 40000

- 30000

- 20000

- 10000

0

Hit 0 20 40 60 80 100

- 40000

- 39500

- 39000

- 38500

- 38000

Hit

Algorithm 3

0 20 40 60 80 100

- 40000

- 30000

- 20000

- 10000

0

Hit 0 20 40 60 80 100

- 39500

- 39000

- 38500

- 38000

- 37500

- 37000

- 36500

Hit

SOMAATO

0 20 40 60 80 100

- 40000

- 30000

- 20000

- 10000

0

Hit 0 20 40 60 80 100

- 40000

- 39500

- 39000

- 38500

- 38000

Hit

-126-

7.15. Rastrigin’s function – 100D

Algorithm 1

0 20 40 60 80 100

- 400000

- 300000

- 200000

- 100000

0

Hit 0 20 40 60 80 100

- 450000

- 400000

- 350000

- 300000

- 250000

- 200000

Hit

-127-

Algorithm 2

0 20 40 60 80 100

- 700000

- 600000

- 500000

- 400000

- 300000

- 200000

- 100000

0

Hit 0 20 40 60 80 100

- 750000

- 700000

- 650000

- 600000

Hit

Algorithm 3

0 20 40 60 80 100

- 700000

- 600000

- 500000

- 400000

- 300000

- 200000

- 100000

0

Hit 0 20 40 60 80 100

- 700000

- 650000

- 600000

- 550000

- 500000

- 450000

Hit

SOMAATO

0 20 40 60 80 100

- 700000

- 600000

- 500000

- 400000

- 300000

- 200000

- 100000

0

Hit 0 20 40 60 80 100

- 750000

- 700000

- 650000

- 600000

Hit

-128-

7.16. Schwefel’s function – 2D

!

f x() = "xi # sin xi()
i=1

Dim

$

-129-

Algorithm 1

0 20 40 60 80 100

- 800

- 600

- 400

- 200

0

Hit 0 20 40 60 80 100

- 800

- 750

- 700

- 650

- 600

Hit

Algorithm 2

0 20 40 60 80 100

- 800

- 600

- 400

- 200

0

Hit 0 20 40 60 80 100

- 837.966

- 837.966

- 837.966

- 837.966

Hit

Algorithm 3

0 20 40 60 80 100

- 800

- 600

- 400

- 200

0

Hit 0 20 40 60 80 100

- 840

- 820

- 800

- 780

- 760

- 740

- 720

Hit

SOMAATO

0 20 40 60 80 100

- 800

- 600

- 400

- 200

0

Hit 0 20 40 60 80 100

- 837.966

- 837.966

- 837.966

- 837.966

Hit

-130-

7.17. Schwefel’s function – 20D

Algorithm 1

0 20 40 60 80 100

- 8000

- 6000

- 4000

- 2000

0

Hit 0 20 40 60 80 100

- 8000

- 7500

- 7000

- 6500

Hit

-131-

Algorithm 2

0 20 40 60 80 100

- 8000

- 6000

- 4000

- 2000

0

Hit 0 20 40 60 80 100

- 8350

- 8300

- 8250

- 8200

- 8150

Hit

Algorithm 3

0 20 40 60 80 100

- 8000

- 6000

- 4000

- 2000

0

Hit 0 20 40 60 80 100

- 8300

- 8200

- 8100

- 8000

- 7900

Hit

SOMAATO

0 20 40 60 80 100

- 8000

- 6000

- 4000

- 2000

0

Hit 0 20 40 60 80 100

- 8350

- 8300

- 8250

- 8200

- 8150

- 8100

Hit

-132-

7.18. Schwefel’s function – 100D

Algorithm 1

0 20 40 60 80 100

- 25000

- 20000

- 15000

- 10000

- 5000

0

Hit 0 20 40 60 80 100

- 24000

- 22000

- 20000

- 18000

Hit

-133-

Algorithm 2

0 20 40 60 80 100

- 30000

- 25000

- 20000

- 15000

- 10000

- 5000

0

Hit 0 20 40 60 80 100

- 33000

- 32000

- 31000

- 30000

- 29000

- 28000

- 27000

Hit

Algorithm 3

0 20 40 60 80 100

- 30000

- 25000

- 20000

- 15000

- 10000

- 5000

0

Hit 0 20 40 60 80 100

- 31000

- 30000

- 29000

- 28000

- 27000

- 26000

- 25000

- 24000

Hit

SOMAATO

0 20 40 60 80 100

- 30000

- 25000

- 20000

- 15000

- 10000

- 5000

0

Hit 0 20 40 60 80 100

- 33000

- 32000

- 31000

- 30000

- 29000

- 28000

- 27000

Hit

-134-

7.19. Griewangk’s function – 2D

!

f x() =
xi
2

4000
i=1

Dim

" # cos
xi

i

$

%
&

'

(
)

i=1

Dim

* +1

-135-

Algorithm 1

0 20 40 60 80 100

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Hit 0 20 40 60 80 100

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Hit

Algorithm 2

0 20 40 60 80 100

- 1.0

- 0.5

0.0

0.5

1.0

Hit 0 20 40 60 80 100

0.00

0.02

0.04

0.06

0.08

0.10

Hit

Algorithm 3

0 20 40 60 80 100

- 1.0

- 0.5

0.0

0.5

1.0

Hit 0 20 40 60 80 100

0.00

0.05

0.10

0.15

Hit

SOMAATO

0 20 40 60 80 100

- 1.0

- 0.5

0.0

0.5

1.0

Hit 0 20 40 60 80 100

0.00

0.02

0.04

0.06

0.08

Hit

-136-

7.20. Griewangk’s function – 20D

Algorithm 1

0 20 40 60 80 100

0.000

0.001

0.002

0.003

0.004

0.005

Hit
0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Hit

-137-

Algorithm 2

0 20 40 60 80 100

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Hit 0 20 40 60 80 100

0.00

0.05

0.10

0.15

0.20

Hit

Algorithm 3

0 20 40 60 80 100

0.00

0.02

0.04

0.06

0.08

0.10

Hit 0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

Hit

SOMAATO

0 20 40 60 80 100

0.000

0.005

0.010

0.015

0.020

0.025

Hit 0 20 40 60 80 100

0.00

0.05

0.10

0.15

0.20

0.25

Hit

-138-

7.21. Griewangk’s function – 100D

Algorithm 1

0 20 40 60 80 100

0

1

2

3

4

5

Hit 0 20 40 60 80 100

5

6

7

8

9

10

Hit

-139-

Algorithm 2

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Hit 0 20 40 60 80 100

1.3

1.4

1.5

1.6

Hit

Algorithm 3

0 20 40 60 80 100

0.0

0.5

1.0

1.5

2.0

Hit 0 20 40 60 80 100

1.8

2.0

2.2

2.4

2.6

2.8

Hit

SOMAATO

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Hit 0 20 40 60 80 100

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

Hit

-140-

7.22. Sine envelope sine wave function – 2D

!

f x() = "
sin

2
xi+1
2 + xi

2() " 0.5
0.001 xi+1

2 + xi
2() +1()

2
+ 0.5

$

%
% %

&

'

(
((i=1

Dim"1

)

-141-

Algorithm 1

0 20 40 60 80 100

- 1.4

- 1.2

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

0.0

Hit 0 20 40 60 80 100

- 1.45

- 1.40

- 1.35

- 1.30

Hit

Algorithm 2

0 20 40 60 80 100

- 1.4

- 1.2

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

0.0

Hit 0 20 40 60 80 100

- 1.48

- 1.46

- 1.44

- 1.42

- 1.40

- 1.38

- 1.36

Hit

Algorithm 3

0 20 40 60 80 100

- 1.4

- 1.2

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

0.0

Hit 0 20 40 60 80 100

- 1.45

- 1.40

- 1.35

- 1.30

Hit

SOMAATO

0 20 40 60 80 100

- 1.4

- 1.2

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

0.0

Hit 0 20 40 60 80 100

- 1.45

- 1.40

- 1.35

- 1.30

- 1.25

Hit

-142-

7.23. Sine envelope sine wave function – 20D

Algorithm 1

0 20 40 60 80 100

- 25

- 20

- 15

- 10

- 5

0

Hit 0 20 40 60 80 100

- 27

- 26

- 25

- 24

- 23

- 22

Hit

-143-

Algorithm 2

0 20 40 60 80 100

- 25

- 20

- 15

- 10

- 5

0

Hit 0 20 40 60 80 100

- 28

- 27

- 26

- 25

- 24

Hit

Algorithm 3

0 20 40 60 80 100

- 25

- 20

- 15

- 10

- 5

0

Hit 0 20 40 60 80 100

- 27

- 26

- 25

- 24

- 23

Hit

SOMAATO

0 20 40 60 80 100

- 25

- 20

- 15

- 10

- 5

0

Hit 0 20 40 60 80 100

- 28

- 27

- 26

- 25

- 24

Hit

-144-

7.24. Sine envelope sine wave function – 100D

Algorithm 1

0 20 40 60 80 100

- 80

- 60

- 40

- 20

0

Hit 0 20 40 60 80 100

- 86

- 84

- 82

- 80

- 78

- 76

- 74

- 72

Hit

-145-

Algorithm 2

0 20 40 60 80 100

- 100

- 80

- 60

- 40

- 20

0

Hit 0 20 40 60 80 100

- 110

- 105

- 100

- 95

Hit

Algorithm 3

0 20 40 60 80 100

- 100

- 80

- 60

- 40

- 20

0

Hit 0 20 40 60 80 100

- 100

- 95

- 90

- 85

Hit

SOMAATO

0 20 40 60 80 100

0

20

40

60

80

100

Hit 0 20 40 60 80 100

90

95

100

105

110

115

120

Hit

-146-

7.25. Stretched V sine wave function (Ackley) – 2D

!

f x() = xi+1
2

+ xi
2()

i=1

Dim"1

#
0.25

sin
2
50 xi+1

2
+ xi

2()
0.1$

%
& '

(
) +1

$

%
&

'

(
)

-147-

Algorithm 1

0 20 40 60 80 100

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Hit 0 20 40 60 80 100

0.0

0.5

1.0

1.5

Hit

Algorithm 2

0 20 40 60 80 100

0

5.¥10
- 8

1.¥10- 7

1.5¥10
- 7

2.¥10- 7

Hit 0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

0.5

Hit

Algorithm 3

0 20 40 60 80 100

0

2.¥10
- 6

4.¥10
- 6

6.¥10
- 6

8.¥10
- 6

Hit 0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Hit

SOMAATO

0 20 40 60 80 100

0

1.¥10
- 7

2.¥10
- 7

3.¥10
- 7

4.¥10
- 7

5.¥10- 7

6.¥10- 7

Hit 0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

Hit

-148-

7.26. Stretched V sine wave function (Ackley) –
20D

Algorithm 1

0 20 40 60 80 100

0

2

4

6

8

10

12

Hit 0 20 40 60 80 100

5

10

15

20

25

30

35

40

Hit

-149-

Algorithm 2

0 20 40 60 80 100

0.0

0.5

1.0

1.5

2.0

2.5

Hit 0 20 40 60 80 100

2

4

6

8

10

Hit

Algorithm 3

0 20 40 60 80 100

0

1

2

3

4

5

Hit 0 20 40 60 80 100

5

10

15

20

Hit

SOMAATO

0 20 40 60 80 100

0.0

0.5

1.0

1.5

2.0

2.5

Hit
0 20 40 60 80 100

2

3

4

5

6

7

8

Hit

-150-

7.27. Stretched V sine wave function (Ackley) –
100D

Algorithm 1

0 20 40 60 80 100

0

50

100

150

200

Hit 0 20 40 60 80 100

220

230

240

250

260

270

280

290

Hit

-151-

Algorithm 2

0 20 40 60 80 100

0

20

40

60

80

100

Hit 0 20 40 60 80 100

90

95

100

105

110

115

120

Hit

Algorithm 3

0 20 40 60 80 100

0

20

40

60

80

100

120

Hit 0 20 40 60 80 100

120

130

140

150

160

Hit

SOMAATO

0 20 40 60 80 100

0

20

40

60

80

100

Hit 0 20 40 60 80 100

90

100

110

120

Hit

-152-

7.28. Test function (Ackley) – 2D

!

f x() = 3 cos 2xi() + sin 2xi+1()() +
xi+1

2

+ xi
2

e
0.2

"

$
$

%

&

'
'

i=1

Dim(1

)

-153-

Algorithm 1

0 20 40 60 80 100

- 2.5

- 2.0

- 1.5

- 1.0

- 0.5

0.0

Hit 0 20 40 60 80 100

- 2.5

- 2.0

- 1.5

- 1.0

- 0.5

Hit

Algorithm 2

0 20 40 60 80 100

- 2.5

- 2.0

- 1.5

- 1.0

- 0.5

0.0

Hit 0 20 40 60 80 100

- 2.60

- 2.55

- 2.50

- 2.45

- 2.40

- 2.35

- 2.30

- 2.25

Hit

Algorithm 3

0 20 40 60 80 100

- 2.5

- 2.0

- 1.5

- 1.0

- 0.5

0.0

Hit 0 20 40 60 80 100

- 2.6

- 2.5

- 2.4

- 2.3

- 2.2

Hit

SOMAATO

0 20 40 60 80 100

- 2.5

- 2.0

- 1.5

- 1.0

- 0.5

0.0

Hit 0 20 40 60 80 100

- 2.6

- 2.5

- 2.4

- 2.3

- 2.2

Hit

-154-

7.29. Test function (Ackley) – 20D

Algorithm 1

0 20 40 60 80 100

- 30

- 25

- 20

- 15

- 10

- 5

0

Hit 0 20 40 60 80 100

- 30

- 28

- 26

- 24

- 22

- 20

- 18

Hit

-155-

Algorithm 2

0 20 40 60 80 100

- 40

- 30

- 20

- 10

0

Hit 0 20 40 60 80 100

- 31.0

- 30.5

- 30.0

- 29.5

- 29.0

- 28.5

Hit

Algorithm 3

0 20 40 60 80 100

- 30

- 25

- 20

- 15

- 10

- 5

0

Hit 0 20 40 60 80 100

- 31

- 30

- 29

- 28

- 27

- 26

- 25

Hit

SOMAATO

0 20 40 60 80 100

- 30

- 25

- 20

- 15

- 10

- 5

0

Hit 0 20 40 60 80 100

- 31.0

- 30.5

- 30.0

- 29.5

- 29.0

- 28.5

Hit

-156-

7.30. Test function (Ackley) – 100D

Algorithm 1

0 20 40 60 80 100

0

50

100

150

200

250

300

350

Hit 0 20 40 60 80 100

300

350

400

450

500

550

Hit

-157-

Algorithm 2

0 20 40 60 80 100

- 40

- 30

- 20

- 10

0

Hit 0 20 40 60 80 100

- 40

- 20

0

20

40

Hit

Algorithm 3

0 20 40 60 80 100

0

20

40

60

80

Hit 0 20 40 60 80 100

40

60

80

100

120

140

160

180

Hit

SOMAATO

0 20 40 60 80 100

- 40

- 30

- 20

- 10

0

Hit 0 20 40 60 80 100

- 40

- 20

0

20

40

Hit

-158-

7.31. Ackley‘s function – 2D

!

f x() = 20 + e"20e
"0.2 0.5 xi+1

2
+xi

2()
" e

0.5 cos 2#xi+1()+cos 2#xi()()$

%
&

'

(
)

i=1

Dim"1

*

-159-

Algorithm 1

0 20 40 60 80 100

- 4.¥10
- 16

- 3.¥10- 16

- 2.¥10
- 16

- 1.¥10- 16

0

Hit 0 20 40 60 80 100

0

5.¥10- 11

1.¥10
- 10

1.5¥10
- 10

2.¥10- 10

2.5¥10
- 10

Hit

Algorithm 2

0 20 40 60 80 100

- 4.¥10
- 16

- 3.¥10- 16

- 2.¥10
- 16

- 1.¥10- 16

0

Hit 0 20 40 60 80 100

0

5.¥10
- 11

1.¥10
- 10

1.5¥10
- 10

2.¥10- 10

Hit

Algorithm 3

0 20 40 60 80 100

0

5.¥10
- 15

1.¥10
- 14

1.5¥10
- 14

2.¥10- 14

2.5¥10
- 14

3.¥10
- 14

Hit 0 20 40 60 80 100

0

5.¥10
- 7

1.¥10
- 6

1.5¥10- 6

Hit

SOMAATO

0 20 40 60 80 100

- 4.¥10
- 16

- 3.¥10- 16

- 2.¥10
- 16

- 1.¥10- 16

0

Hit 0 20 40 60 80 100

0

5.¥10
- 10

1.¥10
- 9

1.5¥10- 9

2.¥10- 9

2.5¥10
- 9

3.¥10
- 9

3.5¥10- 9

Hit

-160-

7.32. Ackley‘s function – 20D

Algorithm 1

0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

0.5

Hit 0 20 40 60 80 100

0

5

10

15

20

Hit

-161-

Algorithm 2

0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

0.5

Hit 0 20 40 60 80 100

0.5

1.0

1.5

Hit

Algorithm 3

0 20 40 60 80 100

0.0

0.5

1.0

1.5

2.0

Hit 0 20 40 60 80 100

2

4

6

8

10

12

Hit

SOMAATO

0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

Hit 0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

1.2

Hit

-162-

7.33. Ackley‘s function – 100D

Algorithm 1

0 20 40 60 80 100

0

200

400

600

800

1000

Hit 0 20 40 60 80 100

1050

1100

1150

1200

1250

1300

Hit

-163-

Algorithm 2

0 20 40 60 80 100

0

100

200

300

400

Hit 0 20 40 60 80 100

320

340

360

380

400

420

440

460

Hit

Algorithm 3

0 20 40 60 80 100

0

100

200

300

400

500

Hit 0 20 40 60 80 100

500

550

600

650

700

Hit

SOMAATO

0 20 40 60 80 100

0

100

200

300

Hit 0 20 40 60 80 100

320

340

360

380

400

420

440

460

Hit

-164-

7.34. Egg Holder – 2D

!

f x() = " xi+1 + 47()sin xi+1 +
xi

2
+ 47

$
% %

&

'
((+ sin xi " xi+1 + 47()() "xi()

$
%
%

&

'
(
(

i=1

Dim"1

)

-165-

Algorithm 1

0 20 40 60 80 100

- 800

- 600

- 400

- 200

0

Hit 0 20 40 60 80 100

- 900

- 800

- 700

- 600

- 500

- 400

- 300

Hit

Algorithm 2

0 20 40 60 80 100

- 800

- 600

- 400

- 200

0

Hit 0 20 40 60 80 100

- 900

- 800

- 700

- 600

- 500

- 400

Hit

Algorithm 3

0 20 40 60 80 100

- 800

- 600

- 400

- 200

0

Hit 0 20 40 60 80 100

- 900

- 800

- 700

- 600

- 500

- 400

Hit

SOMAATO

0 20 40 60 80 100

- 800

- 600

- 400

- 200

0

Hit 0 20 40 60 80 100

- 900

- 800

- 700

- 600

- 500

- 400

Hit

-166-

7.35. Egg Holder – 20D

Algorithm 1

0 20 40 60 80 100

- 12000

- 10000

- 8000

- 6000

- 4000

- 2000

0

Hit 0 20 40 60 80 100

- 12000

- 11000

- 10000

- 9000

- 8000

- 7000

Hit

-167-

Algorithm 2

0 20 40 60 80 100

- 14000

- 12000

- 10000

- 8000

- 6000

- 4000

- 2000

0

Hit 0 20 40 60 80 100

- 14000

- 13000

- 12000

- 11000

- 10000

- 9000

- 8000

Hit

Algorithm 3

0 20 40 60 80 100

- 12000

- 10000

- 8000

- 6000

- 4000

- 2000

0

Hit 0 20 40 60 80 100

- 13000

- 12000

- 11000

- 10000

- 9000

- 8000

- 7000

Hit

SOMAATO

0 20 40 60 80 100

- 14000

- 12000

- 10000

- 8000

- 6000

- 4000

- 2000

0

Hit 0 20 40 60 80 100

- 14000

- 13000

- 12000

- 11000

- 10000

- 9000

- 8000

Hit

-168-

7.36. Egg Holder – 100D

Algorithm 1

0 20 40 60 80 100

- 30000

- 25000

- 20000

- 15000

- 10000

- 5000

0

Hit 0 20 40 60 80 100

- 34000

- 32000

- 30000

- 28000

- 26000

- 24000

- 22000

Hit

-169-

Algorithm 2

0 20 40 60 80 100

- 30000

- 25000

- 20000

- 15000

- 10000

- 5000

0

Hit 0 20 40 60 80 100

- 32000

- 30000

- 28000

- 26000

- 24000

- 22000

- 20000

Hit

Algorithm 3

0 20 40 60 80 100

- 30000

- 25000

- 20000

- 15000

- 10000

- 5000

0

Hit 0 20 40 60 80 100

- 30000

- 28000

- 26000

- 24000

- 22000

- 20000

Hit

SOMAATO

0 20 40 60 80 100

- 30000

- 25000

- 20000

- 15000

- 10000

- 5000

0

Hit 0 20 40 60 80 100

- 32000

- 30000

- 28000

- 26000

- 24000

- 22000

- 20000

Hit

-170-

7.37. Rana’s function – 2D

!

f x() =
xi+1 +1()cos xi+1 " xi +1()sin xi+1 + xi +1()

+cos xi+1 + xi +1()sin xi+1 " xi +1()xi

$

%
%
%

&

'

(
(
(i=1

Dim"1

)

-171-

Algorithm 1

0 20 40 60 80 100

- 500

- 400

- 300

- 200

- 100

0

Hit 0 20 40 60 80 100

- 500

- 450

- 400

- 350

- 300

- 250

Hit

Algorithm 2

0 20 40 60 80 100

- 500

- 400

- 300

- 200

- 100

0

Hit 0 20 40 60 80 100

- 500

- 450

- 400

- 350

Hit

Algorithm 3

0 20 40 60 80 100

- 500

- 400

- 300

- 200

- 100

0

Hit 0 20 40 60 80 100

- 500

- 450

- 400

- 350

Hit

SOMAATO

0 20 40 60 80 100

- 500

- 400

- 300

- 200

- 100

0

Hit 0 20 40 60 80 100

- 500

- 450

- 400

- 350

Hit

-172-

7.38. Rana’s function – 20D

Algorithm 1

0 20 40 60 80 100

- 7000

- 6000

- 5000

- 4000

- 3000

- 2000

- 1000

0

Hit 0 20 40 60 80 100

- 7500

- 7000

- 6500

- 6000

- 5500

- 5000

- 4500

Hit

-173-

Algorithm 2

0 20 40 60 80 100

- 6000

- 4000

- 2000

0

Hit 0 20 40 60 80 100

- 7500

- 7000

- 6500

- 6000

- 5500

- 5000

Hit

Algorithm 3

0 20 40 60 80 100

- 7000

- 6000

- 5000

- 4000

- 3000

- 2000

- 1000

0

Hit 0 20 40 60 80 100

- 7000

- 6500

- 6000

- 5500

- 5000

Hit

SOMAATO

0 20 40 60 80 100

- 7000

- 6000

- 5000

- 4000

- 3000

- 2000

- 1000

0

Hit 0 20 40 60 80 100

- 7500

- 7000

- 6500

- 6000

- 5500

Hit

-174-

7.39. Rana’s function – 100D

Algorithm 1

0 20 40 60 80 100

- 20000

- 15000

- 10000

- 5000

0

Hit 0 20 40 60 80 100

- 22000

- 20000

- 18000

- 16000

- 14000

Hit

-175-

Algorithm 2

0 20 40 60 80 100

- 20000

- 15000

- 10000

- 5000

0

Hit 0 20 40 60 80 100

- 19000

- 18000

- 17000

- 16000

- 15000

- 14000

- 13000

Hit

Algorithm 3

0 20 40 60 80 100

- 15000

- 10000

- 5000

0

Hit 0 20 40 60 80 100

- 19000

- 18000

- 17000

- 16000

- 15000

- 14000

- 13000

- 12000

Hit

SOMAATO

0 20 40 60 80 100

- 20000

- 15000

- 10000

- 5000

0

Hit 0 20 40 60 80 100

- 19000

- 18000

- 17000

- 16000

- 15000

- 14000

Hit

-176-

7.40. Pathological test function – 2D

!

f x() =
sin

2
xi+1
2 +100xi

2() " 0.5
0.001 xi+1

2 " 2xixi+1 + xi
2()
2

+1
+ 0.5

$

%
% %

&

'

(
((i=1

Dim"1

)

-177-

Algorithm 1

0 20 40 60 80 100

0

0.00002

0.00004

0.00006

0.00008

Hit 0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

0.5

Hit

Algorithm 2

0 20 40 60 80 100

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

Hit 0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

Hit

Algorithm 3

0 20 40 60 80 100

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

Hit 0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

0.5

Hit

SOMAATO

0 20 40 60 80 100

0

5.¥10
- 6

0.00001

0.000015

0.00002

0.000025

0.00003

Hit 0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

Hit

-178-

7.41. Pathological test function – 20D

Algorithm 1

0 20 40 60 80 100

0

1

2

3

4

Hit 0 20 40 60 80 100

3

4

5

6

Hit

-179-

Algorithm 2

0 20 40 60 80 100

0

1

2

3

4

Hit 0 20 40 60 80 100

3.5

4.0

4.5

5.0

5.5

6.0

6.5

Hit

Algorithm 3

0 20 40 60 80 100

0

1

2

3

4

Hit 0 20 40 60 80 100

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Hit

SOMAATO

0 20 40 60 80 100

0

1

2

3

4

Hit 0 20 40 60 80 100

3.5

4.0

4.5

5.0

5.5

6.0

6.5

Hit

-180-

7.42. Pathological test function – 100D

Algorithm 1

0 20 40 60 80 100

0

10

20

30

Hit 0 20 40 60 80 100

36

37

38

39

40

41

42

Hit

-181-

Algorithm 2

0 20 40 60 80 100

0

10

20

30

40

Hit 0 20 40 60 80 100

38

39

40

41

42

Hit

Algorithm 3

0 20 40 60 80 100

0

10

20

30

40

Hit 0 20 40 60 80 100

38

39

40

41

42

43

Hit

SOMAATO

0 20 40 60 80 100

0

10

20

30

40

Hit 0 20 40 60 80 100

38

39

40

41

42

Hit

-182-

7.43. Michalewicz‘s function – 2D

!

f x() = " sin xi+1()sin20
2xi+1

2

#

$

%
&

'

(
) + sin

20 xi
2

#

$

%
&

'

(
) sin xi()

$

%
&

'

(
)

i=1

Dim"1

*

-183-

Algorithm 1

0 20 40 60 80 100

- 1.5

- 1.0

- 0.5

0.0

Hit 0 20 40 60 80 100

- 1.8

- 1.7

- 1.6

- 1.5

- 1.4

- 1.3

- 1.2

- 1.1

Hit

Algorithm 2

0 20 40 60 80 100

- 1.5

- 1.0

- 0.5

0.0

Hit 0 20 40 60 80 100

- 3.5

- 3.0

- 2.5

- 2.0

- 1.5

- 1.0

- 0.5

0.0

Hit

Algorithm 3

0 20 40 60 80 100

- 1.5

- 1.0

- 0.5

0.0

Hit 0 20 40 60 80 100

- 3.5

- 3.0

- 2.5

- 2.0

- 1.5

- 1.0

- 0.5

0.0

Hit

SOMAATO

0 20 40 60 80 100

- 1.5

- 1.0

- 0.5

0.0

Hit 0 20 40 60 80 100

- 3.5

- 3.0

- 2.5

- 2.0

- 1.5

- 1.0

- 0.5

0.0

Hit

-184-

7.44. Michalewicz‘s function – 20D

Algorithm 1

0 20 40 60 80 100

- 20

- 15

- 10

- 5

0

Hit 0 20 40 60 80 100

- 19.5

- 19.0

- 18.5

- 18.0

Hit

-185-

Algorithm 2

0 20 40 60 80 100

- 20

- 15

- 10

- 5

0

Hit 0 20 40 60 80 100

- 19.80

- 19.75

- 19.70

- 19.65

- 19.60

Hit

Algorithm 3

0 20 40 60 80 100

- 20

- 15

- 10

- 5

0

Hit 0 20 40 60 80 100

- 19.8

- 19.6

- 19.4

- 19.2

- 19.0

Hit

SOMAATO

0 20 40 60 80 100

- 20

- 15

- 10

- 5

0

Hit 0 20 40 60 80 100

- 19.80

- 19.75

- 19.70

- 19.65

- 19.60

- 19.55

Hit

-186-

7.45. Michalewicz‘s function – 100D

Algorithm 1

0 20 40 60 80 100

- 70

- 60

- 50

- 40

- 30

- 20

- 10

0

Hit 0 20 40 60 80 100

- 72

- 70

- 68

- 66

- 64

- 62

- 60

- 58

Hit

-187-

Algorithm 2

0 20 40 60 80 100

- 80

- 60

- 40

- 20

0

Hit 0 20 40 60 80 100

- 92

- 90

- 88

- 86

Hit

Algorithm 3

0 20 40 60 80 100

- 80

- 60

- 40

- 20

0

Hit 0 20 40 60 80 100

- 88

- 86

- 84

- 82

- 80

- 78

Hit

SOMAATO

0 20 40 60 80 100

- 80

- 60

- 40

- 20

0

Hit 0 20 40 60 80 100

- 91

- 90

- 89

- 88

- 87

- 86

- 85

Hit

-188-

7.46. Master’s cosine wave function – 2D

!

f x() = " e
"
1

8
xi+1
2 +0.5xi xi+1 +xi

2()
cos 4 xi+1

2 + 0.5xixi+1 + xi
2()

i=1

Dim"1

-189-

Algorithm 1

0 20 40 60 80 100

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

0.0

Hit 0 20 40 60 80 100

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

Hit

Algorithm 2

0 20 40 60 80 100

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

0.0

Hit 0 20 40 60 80 100

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

Hit

Algorithm 3

0 20 40 60 80 100

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

0.0

Hit 0 20 40 60 80 100

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

Hit

SOMAATO

0 20 40 60 80 100

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

0.0

Hit 0 20 40 60 80 100

- 1.0

- 0.9

- 0.8

- 0.7

- 0.6

- 0.5

- 0.4

- 0.3

Hit

-190-

7.47. Master’s cosine wave function – 20D

Algorithm 1

0 20 40 60 80 100

- 15

- 10

- 5

0

Hit 0 20 40 60 80 100

- 16

- 14

- 12

- 10

- 8

Hit

-191-

Algorithm 2

0 20 40 60 80 100

- 15

- 10

- 5

0

Hit 0 20 40 60 80 100

- 18

- 17

- 16

- 15

- 14

- 13

- 12

- 11

Hit

Algorithm 3

0 20 40 60 80 100

- 15

- 10

- 5

0

Hit 0 20 40 60 80 100

- 17

- 16

- 15

- 14

- 13

- 12

- 11

- 10

Hit

SOMAATO

0 20 40 60 80 100

- 15

- 10

- 5

0

Hit 0 20 40 60 80 100

- 18

- 17

- 16

- 15

- 14

- 13

- 12

- 11

Hit

-192-

7.48. Master’s cosine wave function – 100D

Algorithm 1

0 20 40 60 80 100

- 35

- 30

- 25

- 20

- 15

- 10

- 5

0

Hit 0 20 40 60 80 100

- 35

- 30

- 25

- 20

Hit

-193-

Algorithm 2

0 20 40 60 80 100

- 40

- 30

- 20

- 10

0

Hit 0 20 40 60 80 100

- 45

- 40

- 35

- 30

- 25

Hit

Algorithm 3

0 20 40 60 80 100

- 40

- 30

- 20

- 10

0

Hit 0 20 40 60 80 100

- 40

- 35

- 30

- 25

Hit

SOMAATO

0 20 40 60 80 100

- 40

- 30

- 20

- 10

0

Hit 0 20 40 60 80 100

- 45

- 40

- 35

- 30

- 25

Hit

-194-

LIST OF AUTHOR’S PUBLICATION
ACTIVITES

Journal articles

1) ZELINKA I.,OPLATKOVA Z, NOLLE L..: Boolean Symmetry Function

Synthesis by Means of Arbitrary Evolutionary Algorithms-Comparative
Study, International Journal of Simulation Systems, Science and
Technology, Volume 6, Number 9, August 2005, pages 44 - 56, ISSN:
1473-8031, online http://ducati.doc.ntu.ac.uk/uksim/journal/Vol-
6/No.9/cover.htm, ISSN: 1473-804x

Conference papers

1) ZELINKA I., OPLATKOVA Z.: Analytic Programming – Comparative
Study, Mendel ’03, In: Proc. 9th International Conference on Soft
Computing Mendel’03, Brno, Czech Republic, 2003, 86-89, ISBN 80-
214-2135-5

2) ZELINKA I., OPLATKOVA Z.: Analytic Programming – Comparative
Study. CIRAS’03, The second International Conference on Computational
Intelligence, Robotics, and Autonomous Systems, Singapore, 2003, ISSN
0219-6131

3) ZELINKA I.,OPLATKOVA Z.: Symbolic Regression by Means of
Analytic Programming, Summer School Datastat03 ,Proceedings, Folia
Fac.Sci.Nat.Univ.Masaryk.Brunensis, Mathematica 15, Brno,2003, ISBN
80-210-3564-1

4) ZELINKA I.,OPLATKOVA Z.: Boolean Parity Function Synthesis by
Means of Arbitrarry Evolutionary Algorithms-Comparative Study", In: 8th
World Multiconference on Systemics, Cybernetics and Informatics (SCI
2004), Orlando, USA, in July 18-21, 2004, ISBN 980-6560-13-2

5) ZELINKA I.,OPLATKOVA Z.: Boolean Symmetry Function Synthesis by
Means of Arbitrary Evolutionary Algorithms-Comparative Study, In:
Mendel '04, Proc. 10th International Conference on Soft Computing
Mendel'04, Brno, Czech Republic, 2004, ISBN 80-214-2676-4

6) ZELINKA I.,OPLATKOVA Z, NOLLE L..: Boolean Symmetry Function
Synthesis by Means of Arbitrary Evolutionary Algorithms-Comparative

-195-

Study, ESM '2004, In: Proc. 18th European Simulation Multiconference,
Magdeburg, Germany 2004, ISBN: 3-936150-35-4

7) OPLATKOVA Z.: Analytic Programming – Boolean Symmetry Problems
by means of Evolutionary Algorithms, In: Proc. PAD2004, Bratislava,
Slovensko,2004, ISBN 80-969202-0-0

8) OPLATKOVA Z., ZELINKA I.: Investigation on Shannon – Kotelnik
Theorem Impact on SOMA Algorithm Performance, ECMS '2005, In:
Proc. 19th European Conference on Modelling and Simulation, Riga,
Latvia 2005, pages 66-71, ISBN: 1-84233-112-4

9) OPLATKOVA Z., Optimal Trajectory of Robots Using Symbolic
Regression, In: CD-ROM of Proc. 56th International Astronautical
Congress 2005, Fukuoka, Japan, 2005, paper nr. IAC-05-C1.4.07

10) OPLATKOVA Z., ZELINKA I., Santa Fe Trail for Artificial Ant with
Simulating Annealing – preliminary study, ECMS 2006, In Proc. 20th
European Conference on Modelling and Simulation 2006, Bonn,
Germany, 28-31 May 2006, pages 56-61, ISBN 0-9553018-0-7

11) ZELINKA I., VOJTESEK J., OPLATKOVA Z.: Simulation Study of the
CSTR Reactor for Control Purposes, ECMS 2006, In Proc. 20th European
Conference on Modelling and Simulation 2006, Bonn, Germany, 28-31
May 2006, pages 479-485, ISBN 0-9553018-0-7

12) OPLATKOVA Z., ZELINKA I., Creating Evolutionary Algorithms by
means of Analytic Programming – Preliminary Study, Mendel 2006 –
12th International Conference on Softcomputing, Brno, Czech Republic,
31 May – 2 June 2006, pages 19 – 24, ISBN 80-214-3195-4

13) ZELINKA I., VARACHA P., OPLATKOVA Z., Evolutionary Synthesis
of Neural Network, Mendel 2006 – 12th International Conference on
Softcomputing, Brno, Czech Republic, 31 May – 2 June 2006, pages 25 –
31, ISBN 80-214-3195-4

14) OPLATKOVA Z., ZELINKA I., Investigation on Artificial Ant using
Analytic Programming, GECCO 2006, Seattle, Washington, USA, 8 – 12
July 2006, ISBN 1-59593-186-4

15) OPLATKOVA Z., ZELINKA I., Setting an Optimal Trajectory By Means
Of Analytic Programming, TMT 2006, Lloret de Mar, Spain, 10 – 15
September 2006, ISBN 9958-617-30-7

16) OPLATKOVA Z., ZELINKA I., Learning of robots via symbolic
regression and evolutionary computation, workshop WETDAP 2007 in
Znalosti 2007, VSB Ostrava, Czech Republic, 2007, pages 27 – 34, ISBN
978-80-248-1332-5

-196-

17) OPLATKOVA Z., ZELINKA I., Santa Fe Trail for Artificial Ant with
Analytic Programming and Three Evolutionary Algorithms, AMS 2007,
Phuket Thailand, 27-30 March 2007, pages 334-339,
ISBN: 0-7695-2845-7

18) OPLATKOVA Z., ZELINKA I., Creating evolutionary algorithms by
means of analytic programming – design of new cost function, ECMS
2007, Praha, 3 – 6 June 2007, pages 271 – 276, ISBN 978-0-9553018-2-7,
best paper award

19) OPLATKOVA Z., ZELINKA I., Symbolic regression and evolutionary
computation in setting an optimal trajectory for a robot, workshop ETID
2007 in DEXA 2007, 3-7 Sept. 2007, Regensburg, Germany, pages 168-
172, ISBN: 978-0-7695-2932-5

-197-

CURRICULUM VITAE

PERSONAL INFORMATION
 Name Zuzana Oplatková
 Date of birth 22 May 1980

 Present address Světlov 65, 76302 Zlín - Malenovice

 Marital status Single

 Contact tel: +420 604 741 178,
email: oplatkova@fai.utb.cz

EDUCATION

 1994 – 1998
High School in Otrokovice
GCE in Czech language, German language, English
language, Mathematics and Programming

 1998 – 2003
Tomas Bata University in Zlín at Chemical and Process
Engineering program, in the field of Automation and
Control Technology in Consumer Industry

 June 2003 State exam and defence of diploma thesis Analytic
Programming with excellent mark

 September 2003 -
November 2004

Student of a doctoral program in Technical Cybernetics
in full-time study

 Since December
2004

Further study in the doctoral program as a part-time
student

SCHOLARSHIPS AND ATTENDENCE AT CONFERENCES

 October –
December 2002

Scholarship under the program ERASMUS at The Open
University, Oxford Research Unit, Oxford, Great Britain.

 April - July 2004 Scholarship under the program Nonlinear and adaptive
control, Politecnico di Milano, Milano, Italy

 2003 – 2007

Attendance at international conference: Mendel’03 and
Mendel’06 in Brno, Czech Republic; PAD in Bratislava,
Slovakia; ESM in Riga, Latvia; IAC 2005 in Fukuoka,
Japan under sponsorship of ESA; ECMS 2006 in Bonn,
Germany; GECCO 2006 in Seattle, Washington, USA;
TMT 2006 in Lloret de Mar, Spain; AMS 2007 in
Phuket, Thailand; EMCS 2007 in Prague, Czech
Republic, ETID 2007 (DEXA 2007) in Regensburg,
Germany

-198-

AWARDS
 2003 Award for the best diploma thesis
 2007 Award for the best paper at conference ECMS 2007
INVITED LECTURES

 February 2006 Planetárium Praha, Čeští studenti v ESA: Astronautický
kongres Fukuoka 2005 (S mravencem do Fukuoky)

 April 2006
Lecture in Lappeenranta, Finland under ERASMUS /
SOCRATES programme, Optimal setting trajectory by
means of Analytic Programming

 December 2006 3 lectures in Bielsko – Biala and Cracow, Poland
MEMBERSHIP
 reviewer of SCI 2005, Florida, USA – 6 articles

 programme chair of student section and IPC member at ECMS 2006 and ECMS
2007

 general programme chair for ECMS 2007, Prague, Czech Republic
programme co-chair for ECMS 2008, Nicosia, Cyprus

 biographical profile included in 2007 Edition of Who’s Who in the World
LANGUAGE KNOWLEDGE
 Czech language Native
 German language GCE at High school
 English language GCE at High school, FCE – December 2005
 French language Basic
 Italian language Basic
 Chinese language Beginner
EMPLOYMENT

 Since Dec 1, 2004

Lecturer at Tomas Bata University in Zlín
- seminars and laboratories – applied informatics,
artificial intelligence (neural networks, evolutionary
algorithms, fuzzy logic), electronic preparation of
documents and www pages

OTHER ACTIVITIES

 2000 – 2003

I worked as a part-time teacher at the House of Children
and Youth “Sluníčko” in Otrokovice. I led 3 to 6 groups
of children aimed to basics of work with PC at 8th Basic
School in Malenovice. In 2002 I led a course for adults.

 2001 – 2005 Computer administrator at 8th Basic School in Zlín –
Malenovice as a part-time job

