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ABSTRAKT

Hejnové algoritmy se staly standardnim nastrojem novodobé optimalizace.
Ptiliv novych metaheuristik vsak prinesl kritiku vici kvalité, kvantité a diskutabilni
novosti téchto optimalizacnich technik. Tato prace se zabyva momentalnimi
trendy hejnovych algoritmt v oblasti vyvoje a modifikace, ale i nastrahami,
které skytaji.

Uz pres 30 let se metaheuristické algoritmy potykaji se stale stejnymi prob-
lémy. Otazka stagnace, predcasné konvergence ¢i nizké rozlisnosti feseni je
vyzvou, kterda je dilezitd dnes stejné jako v pocéatcich oboru. To neméni
ani vyvoj novych algoritmi, protoze ty mnohdy spise odkryvaji limity sta-
vajicich metodologickych postupti v benchmarkingu, nez aby prispivaly ke
skutecnému posunu v optimalizaci. Nové metaheuristiky tak celi predsudkiim
a vSeobecné nedtvére. Prestoze otazka spravnych postupt je velmi aktualni,
vétsina soucasnych doporuceni ztistava zpravidla v teoretické roviné bez prak-

tické aplikace. To si tato prace klade za cil za¢it ménit.

Autorka navrhuje sadu doporuceni pro vyvoj novych metaheuristik, které pak
implementuje ve vlastnim navrhu hejnového algoritmu s inikovym mechanis-
mem z lokalniho optima. Bizoni algoritmus predstavuje ukazku vyvoje ori-
entovaného na konkrétni optimalizac¢ni problém a zaroven funguje jako model
vybranych aktualnich trend a modifikaci. Spojenim teorie s praxi tato prace

otevira cestu k Teseni nové generace vyzev.



ABSTRACT

Swarm algorithms have become standard tools of modern optimization. How-
ever, the advent of new metaheuristics brought a wave of criticism against
the quantity, quality, and novelty of these optimization techniques. This work
describes the current trends in development and modification of swarm algo-

rithms, as well as the challenges it includes.

For several decades metaheuristic algorithms have fought the very same opti-
mization problems. The issues of stagnation, premature convergence, or low
diversity of the solutions are dealt with today as well as in the beginning.
The development of new algorithms does not state a change. Rather than
genuinely advancing the field, new algorithms raise malpractice awareness in
benchmarking. Due to the common low standard of their proposal studies,
novel metaheuristics face a significant stigma of general distrust and disre-
spect. Although the good practice in benchmarking is a very recent topic,
most current guidelines stay strictly in theory, i.e., are not applied. This work

aims to start a change in this regard.

The Author proposes a set of recommendations for new metaheuristic devel-
opment and implements them in a new swarm algorithm, which was developed
with an escape mechanism out of the local optimum containment challenge.
The Bison Algorithm showcases problem-oriented development and models
current trends and modifications. The connection between theory and prac-

tice opens a way toward a new generation of challenges.
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1 INTRODUCTION

Artificial Intelligence has become an essential part of human lives today. Some-
times explicitly, sometimes undercover, Al guides us on the road, assists our
phones, drives autonomous vehicles, controls our calendar, Google, Netflix,
even Facebook have an entire department focused on advancement and more
profound research on Artificial Intelligence. As a technology, it helps almost

everywhere and it also proves to be a brilliant optimization tool.

The current trend in optimization is to find inspiration in nature. Simula-
tions of various bio-inspired phenomena solve nontrivial optimization tasks.
Complex optimization problems may find solutions by simulating diverse nat-
ural phenomena like foraging, hunting, courtship behavioral patterns, the Dar-
winian theory of evolution, and Mendelian genetic processes. The foundation
lies in the multi-agent system. Each agent represents one particular solution

to the solved problem, whose quality is determined by an objective function.

The bio-inspired optimizers are called metaheuristics. They include a wide
range of algorithms like Differential Evolution [42], the Genetic Algorithm [14],
Particle Swarm Optimization [27], the Cuckoo Search [46], the Grey Wolf Op-
timizer [33], the Self-Organizing Migrating Algorithm [48], the Passing Vehicle
Search Algorithm [39], and many others.

Unlike classical mathematical optimization methods (e.g., linear, dynamic, or
integer programming), metaheuristics cannot guarantee the actual discovery
of optimal solutions. However, as compensation, they offer a viable solution
in a reasonable time. Thus, the metaheuristic approach can be constructive,
especially when exact mathematical methods struggle to solve a problem in a

tolerable period of time.

But even metaheuristics sometimes sail against the wind. There are currently
more than 300 algorithms [34], which often face criticism questioning their
actual novelty, contribution, and their quality. Many troubles come from fal-
lacious parameter settings, the inapplicability of the proposed algorithms, or

embedding the same principles under a new alias [34, 41]. General disrespect



for the population-based algorithms is not the only problem they face. Other
struggles include standard optimization setbacks such as stagnation, premature
convergence, low diversification of the population, or local optimum contain-

ment.

This work analyses the current trends in metaheuristic algorithms, including
the optimization and development struggles. It investigates specific meth-
ods employable to tackle these problems and suggests recommendations for
novel metaheuristic development. As proof of concept, adopting the suggested
guidelines, the Author introduces a new metaheuristic swarm algorithm with

a mechanism against local optimum containment.

The doctoral thesis summary is structured as follows:

- Section 2 designates the goals and methods of this dissertation.

- Section 3 introduces swarm algorithms, names a selection of the most
popular ones, and analyses the numerous reservations against the devel-
opment of novel swarm algorithms. As a reaction, it formulates a set of

recommendations for new metaheuristic development.

- Section 4 proposes a new swarm algorithm based on bison herds’ be-
havioral patterns while adopting previous section’s principles and rec-

ommendations.
- Section 5 investigates the performance of the proposed algorithm.

- Section 6 evaluates the benefit of the work, considering both the appli-

cations and critical points of view.

- Finally, the conclusion contemplates the work and considers its meaning

for science and practice.



2 GOALS AND METHODS OF THE DIS-
SERTATION

1. Map the current scene of modern swarm algorithms, its trends, and
challenges.

2. Investigate the methods addressing the weaknesses of swarm algorithms.

3. Propose a set of recommendations for new metaheuristics creation.

4. Proof of concept testing: Implement the proposed recommendations
and methods in a new swarm algorithm.

5. Evaluate the benefits of the proposed algorithm for applied sciences.

Methods of fulfillment of goals of the dissertation include:

Critical analysis:
o Of novel metaheuristics creation process and its challenges.

o Of modifications, trends, and weaknesses of swarm algorithms.

Experiments:
o The proposed algorithm is compared to other state-of-the-art algorithms
on various benchmarking testbeds IEEE CEC 2015, and 2017.
o The experiments focus on the investigation of the dynamics and inner

processes of the proposed algorithm.

Evaluation:
« Evaluation of the algorithms comply with the evaluation criteria [1].
o The results are examined for statistical significance.
o Identification of the types of optimization problems suitable for the pro-

posed techniques through an in-depth analysis of results.

Programming;:
o Algorithms are coded in Python or MATLAB.

¢ Results are examined in Wolfram Mathematica.



3 SWARM ALGORITHMS

Metaheuristics are optimization algorithms that typically simulate bio-inspired
phenomena. The inspiration comes from both natural (and supernatural)
sources, including a wide range of scientific fields such as Physics [5], Chemistry
[17], Biology [4], the Darwinian theory of evolution, and Mendelian principles

of genetics [14, 42], or behavioral patterns of animal groups [6, 47].

Swarm algorithms are metaheuristics based on the collective intelligence phe-
nomenon as a characteristic feature of animal swarms, flocks, or herds, as
animal groups often make smart decisions only with local information and sim-
ple rules but no centralized control [47]. The fascination with the inspiration
source and the success of some swarm optimizers ignited an unconventional
interest. Hence, swarm algorithms nowadays represent approximately half of
all the known classified metaheuristics with more than 150 specimens [34].
Table 3.1 represents the list of top 10 most popular swarm-based metaheuris-
tics. The data were derived from the Comprehensive Tarxonomies of Nature-
and Bio-Inspired Optimization by Molina et al. [34]. The popularity was
determined by number of references to the proposing publications on Scopus
Database accessed 27/01/2021.

Tab. 3.1 Swarm-inspired metaheuristics sorted by the number of citations of
the original proposal paper (accessed 27/01/2021).

Swarm Algorithm Acronym Year Original Scopus

Paper Citations
1 Particle Swarm Optimization PSO 1995 [11] 11198
2 Ant Colony Optimization ACO 1996 [10] 8199
3 Artificial Bee Colony ABC 2005 [18] 4096
4 Cuckoo Search CS 2009 46] 3856
5  Grey Wolf Optimizer GWO 2014 33] 3842
6 Bat Inspired Algorithm BAT 2010 [45] 2597
7 Whale Optimization Algorithm WOA 2016 [32] 2222
8 Bacterial Foraging Optimization BFOA 2002 35] 2197
9 Firefly Algorithm FA 2009 44] 2143
10 Moth Flame Optimization Algorithm MFO 2015 [31] 1105

10



3.1 Swarm Algorithms Challenges

Nowadays, swarm algorithms face two kinds of challenges: classical optimiza-
tion issues and existential problems. The first one includes problems like stag-
nation, premature convergence, local optimum containment, or low population
diversity. These struggles have been challenging metaheuristics since their be-
ginning, and various methods try to tackle them, such as: multiple populations,

population restart, randomization, self-adaptive parameters, and others.

The existential problems concern the criticism closely linked to novel meta-
heuristics development. The increasing emergence of swarm algorithms during
the last few decades evoked a "mowel algorithms dilemma." The introduction
of metaphor-based development was followed by a massive wave of new swarm
algorithms [9]. To clarify the trend, Figure 3.1 shows the proportion of swarm-
based algorithms compared to the total number of new metaheuristics created
in the years 1973-2018 based on data from [34].

35
v 30
C
2
B 25
2
o)
S 20
o
G
o 15
—
2
10
£
>
Z 5
O -
M N N OO A N N ™~ OO AN in SN O 9N in N O A3 non N~
N IS IS IS 00 00 60 60 00 Oy O O O O © O O © O o o o
a O OO O OO0 O O OO0 OO O OO OO OO OO O O O O O O o o o
T 1 v e AN AN AN AN AN NN NN
Year
B Swarm-based algorithms All metaheuristics

Fig. 3.1 The number of metaheuristic proposals in the years 1973-2018.
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As a reaction to this "metaheuristic avalanche," an eye-catching project, the
Evolutionary Computation Bestiary, started in 2018. The EC Bestiary' cata-
logs the metaphor-based metaheuristics. The primary purpose of this catalog
is to highlight the number of metaheuristics and to point out (and make fun
of?) the pitfalls of metaheuristic development. However, it also offers valuable
sources that bring to light valid recurring mistakes linked to many metaheuris-

tic proposals [38, 40, 41]. The authors point out these reservations:

o Bio-inspired lingo

o Duality of the algorithms

o Too simplified models of bio-inspiration

o Excessive focus on competition and novelty

o Experiments of poor quality

e Undefined relation between academic and real-world problems

o Lack of insight into the algorithms’ functionality

There are three general responses to the aforementioned reservations: A) a
complete ignorance of the critical points, B) rejection of novel metaheuristics

altogether, or C) reflection of valid critical point in the future development.

Unfortunately, the first two approaches are adopted in most scenarios: the
users of metaheuristics, completely ignoring the suggestions for good practice
on one hand, versus the reviewers, who are getting fed up with metaheuristic
malpractice and are inclined to reject the novel metaheuristic once they have
read the title.

In 2005, Lee and Geem proposed the Harmony Search algorithm inspired by
musicians’ improvisation [29]. Five years later, the algorithm was proved to be
a particular case of Evolutionary Strategies [43]. Its novelty and contribution
were impeached. However, the effect was minimal. Figure 3.2 presents the
number of publications citing the Harmony Search proposal versus the expos-
ing publication. The ratio illustrates that the algorithm’s popularity was not

caused by, nor despite, the duality revelation. It was rather unnoticed.

! Available at https://github.com/fcampelo/EC-Bestiary, accessed 01/11/2021

2See, e.g., the Twitter account Daily Bio-heuristics of metaheuristic inspiration for every day (https:
//twitter.com/BioHeuristics) or the Ghost Detection Algorithm Parody (http://oneweirdkerneltrick.
com/spectral.pdf), both accessed 01/11,/2021
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Fig. 3.2 Number of publications citing the Harmony Search Algorithm versus
the exposure publication in 2005-2020.

Most recently, in 2020/2021, researchers called attention to current metaheuris-
tic problems [13, 38, 41]. IEEE established a benchmarking taskforce® and
networks®. Molina et al. (2020) fought the metaphor threat by proposing
behavior-based classification of metaheuristics [34]. Guidelines for fair method-
ology in metaheuristic development and comparison [28] and for benchmarking

[2] were proposed.

Still, when compared to the number of contrasting literature, the effort to
improve the metaheuristic situation concerns just a drop in the ocean of aca-
demic publications. Critical publications mainly state the problem and mark
the territory of metaheuristic badlands. The reservations point to the corrupt
practice and wrongs in metaheuristic optimization but rarely offer solutions,

and the applications are scarce.

Shttps://cmte.ieee.org/cis-benchmarking/, accessed 01/11/2021
‘https://sites.google.com/view/benchmarking-network/home, accessed 01/11/2021
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3.2 Recommendations for Development of New Meta-

heuristics

The criticism mentioned can be formulated on a positive note into guidelines
for metaheuristic design. The Author presents a set of rules based on recom-
mendations from the following sources: [2, 16, 28, 34, 38, 40].

Guidelines for Algorithm Design

« Name motivation (not metaphor-based)

o Use standard vocabulary

o Share the source code of novel algorithms

e Describe algorithms with flowcharts for a better understanding
o Analyze components of the proposed algorithm individually

o Keep it simple

Guidelines for Selection of Algorithms to be Compared and Benchmark

o Select algorithms to be compared with respect to the experiment’s goal
For performance-oriented comparison, compare algorithms with:

« Original version of the algorithm (first proposal)
« Reference version of the algorithm  (the one that is modified)
 Best algorithms on the benchmark being examined (competition winner)

e Other algorithms operating on a similar principle
Select benchmark problems:

Of broad characteristics without bias

Prefer standard benchmark test sets

Guidelines for Experimental Setup

Prefer own implementation over literature-based results

Provide the same conditions for all the experiments

Share the source codes of all the algorithms

14



o Tune the parameters of all the algorithms for the problem at hand with
statistical tests

o Combine multiple performance measures
When examining the CPU execution time, all algorithms should:

e Be coded by the same programmer
e Be coded in the same programming language
o Share most functions

e Be examined on the same computer

Guidelines for Results’ Analysis

» Use statistical tests for significance

o Allow negative results

e Show results in context, provide interpretation

e Be cautious with generalization

e Depict the results in both graphs and tables

« Advocate assets and contribution of the algorithm (novelty /superior per-

formance /methodology /challenge particular problem)

The need for justification of new algorithm development was expressed in mul-
tiple publications [8, 28, 38, 41]. According to LaTorre [28], the arguments in
favor of the usefulness of novel methodology are: undeniable novelty, results

surpassing state-of-the-art optimizers, and contribution to methodology.

In this regard, the Author would like to add another motivation for the justi-
fication of novel metaheuristic development: aiming the development of novel
algorithms at the known problems of current metaheuristic practice. Tackling
the fundamental puzzles of metaheuristic optimization such as stagnation or

premature convergence may lead to the evolution of metaheuristics.

15



4 BISON ALGORITHM

4.1 Motivation

Manifold publications [2, 7, 15, 38, 40, 41] point to the common substandard
practice of metaheuristic proposals and result in general conclusions. The ac-
tual applications of these studies are, however, scarce (see, e.g., [28]). The
proposed algorithm was designed to follow the presented guidelines, demon-

strating the significance of the recommendations from Section 3.2.

The second motivation was to advocate an additional justification argument
for metaheuristic development. So far, three arguments have justified the

usefulness of novel algorithm proposals [28], namely:

e Superior performance surpassing state-of-the-art optimizers
e Undeniable novelty
o Contribution to methodology, e.g., improving a common technique

In addition, the Author would like to add a fourth argument: Aiming de-
velopment at tackling the current optimization problem. To support
this argument, an algorithm aimed at fighting the local optimum containment
problem was developed. It embeds a unique mechanism to avoid local optimum
and ensures the same rate of exploration throughout the whole optimization

process.

4.2 Inspiration

The Bison Algorithm simulates the typical behavior of bison herds: swarming
and running. When predators attack bison, they form a circle with strong
cattle at the outer edge of the circle. The weaker ones hide inside the circle in
a safer position. A running bison can reach a velocity of 56 km per hour and
keep it up for as much as thirty minutes [3, 37]. These behavior patterns serve

as model exploitation and exploration techniques.

16



4.3 Definition

The main characteristic of the Bison Algorithm lies in the division of the
population into two groups. The first group, called the swarming group, takes
care of exploitation, approaching closer to the center of several fittest solutions.
In contrast, the second group steadily examines the search space for new,

promising solutions.

The algorithm is outlined in Algorithm 1 and a simplified flowchart in Fig-
ure 4.1. The UTB A.I. Lab Github repository® hosts the source code of the
Bison Algorithm, which is free to use.

Algorithm 1 Pseudocode of the Bison Algorithm.

1. Initialization:
Objective function: f(x), x= (1, 2, ..., Tp)
Generate swarming group SG randomly
Generate running group RG around Xpes,[(Xpest) < f(x),Vx € SG
Select elite bison group EG based on obj. function value
Sort the population and redefine SG based on obj. function
value SG; = (sort(SGUEG));,j =1,...,|SG
Generate the run direction vector (Eq. 4.4)

2. For every iteration 7 do

3. Compute the center of EG (Eqs. 4.1, 4.2)

4. For every bison x in SG do

5. Compute a new candidate solution Xx,., (Eq. 4.3)

6. If f(Xpew) < f(x) then x = X,y

7. End for

8. Adjust run direction vector (Eq. 4.5)

9. For every bison x in RG do

10. X = x+ run direction (Eq. 4.6)

11. End for

12. Redefine SG for the next iteration ¢4 1:
SGi-i-l,j = (SOTt(SGZ' U RGZ'))j,j = 1, ceny |SG’

13. End for

Shttps://github.com/TBU-AILab/Bison-Algorithm-00P, accessed 02/06/2022
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Fig. 4.1 Simplified flowchart of the Bison Algorithm.
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The control parameters of the Bison Algorithm include:

e Population NP defines the number of individuals in the population,

o Elite group size EG determines the number of fittest solutions for
center computation,

e Swarm group size SG represents the number of solutions in the swarm-
ing group,

e Overstep parameter defines the maximum length of the swarming
movement to the center (0 - no movement, 1 - max. movement to the

center)

The recommended configuration for IEEE CEC 2017 benchmark is: population
of 50, elite group size of 20, swarm group size of 40 and overstep of 3.5 [19].

4.4 Swarming Group

The swarming group shifts its members in the direction of the center of several
fittest solutions. Preliminary experiments promoted ranked center computa-
tion (Egs. 4.1, 4.2), considering the order of the best solutions during the
calculation. Every solution in the swarming group computes a new solution

candidate that replaces the current swarmer if it improves its quality (Eq. 4.3).

The flowchart Figure 4.2 represents the principle of the swarming movement.
Figure 4.3 shows the cumulative locations of the solutions in 50 iterations

during the actual run on the 2-dimensional Rastrigin’s Function.

weight = (10,20,30,...,10 - EG) (4.1)

EG weight; - x;

ked ter = 4.2
ranked center Z; SEG weight, (4.2)
Tnew =  + (ranked center — x) - random/(0, overstep) (4.3)

Where:
— FEG is the elite group size parameter,
— 4, j are indexes for center computation i,j = 1,..., |EG|,

— @ and @, represent a swarming group and a new candidate solutions,

19



— random yields a random vector of within the arguments,

— and overstep defines the maximum length of the swarming movement.
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i=i+1 in the swarming group
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Has the algorithm
iterated through the whole
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No

A

Yes

4

Proceed to the running group

Fig. 4.2 Flowchart of swarming movement.

4.5 Running Group

The running group systematically shifts the solutions in the run direction vec-
tor. The algorithm generates the run direction vector randomly during the
initialization (Eq. 4.4), and then it slightly changes in every iteration (Eq. 4.5).
The running movement (Eq. 4.6) happens even if it lowers the quality of the

solutions.
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ub—1b ub— lb)
45 7 15
run direction;;; = run direction; - random(0.9,1.1) (4.5)

run directionp = random(

x; 1 = x; + run direction;.

Where:
— run direction is the run direction vector,
— D is a dimension,
— 1 1s current iteration,
— ub and [b are the upper and lower boundaries of the search space,
— and x; and @;,; represent a running group member and its updated
position.

This exploration implementation crosses the borders quite often. The study
Border Strategies of the Bison Algorithm [22] examined the most feasible bor-
der strategy and recommended using the hypersphere strategy, connecting the
dimensional upper and lower boundaries.

Iteration 50 Iteration 50
7

) -
>@ %

0.5 1

D@ @R

-1.5 T T 5
-1.5 -1.0 —0.5 0.0 0.5 1.0 15 -1.5

(a) Swarming group (b) Running group

Fig. 4.3 Cumulative movement of the swarming group (a) and the running
group (b) on the 2-dimensional Rastrigin’s Function.



4.6 Modifications of the Bison Algorithm

The Bison Algorithm was developed with an escape mechanism from local
containment. Simulating these behavior patterns in two groups based on their
objective function value separately founded the first version of the algorithm
[23].

*

.’. “‘O
: .
[ /'\ + -I
. i; : s

%, Problem Inspiration o

'S *
. *

Fig. 4.4 Pipeline of the Bison Algorithm development process.

Further variations investigated the options for how to advance the explorative
capacity of the algorithm. The first modification tested the benefits of coher-

ent exploration, which was ultimately employed in all the modifications that
followed [21].

The Bison Seeker modification investigated the behavior change of the explo-
rative solutions when discovering an attractive solution [20]. The Run Support
Strategy added a new parameter to support the utilization of the discovered
solutions [25]. Finally, in 2021 was developed a Self-Adaptive Variant of the
Bison Algorithm based on multi-population scheme with various parameters
configuration, which is available at TBU’s A.I.Lab GitHub repository®. The

development process is mapped in Figure 4.4.

Shttps://github.com/TBU-AILab/Bison-Algorithm-00P, accessed 02/06/2022
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5 PERFORMANCE OF THE BISON ALGO-
RITHM

5.1 Comparison with Other Metaheuristics

The Bison Algorithm was compared to other swarm algorithms on the bench-
mark sets of IEEE CEC 2015 and 2017 in 10, 30, 50, and 100 dimensions.
Following the evaluation recommendations [1], each experiment took 51 inde-

pendent runs, consisting of 10,000 x D evaluations of the objective function.

The selected algorithms were: the Bison Algorithm (BIA), the Cuckoo Search
(CS), Particle Swarm Optimization (PSO), the Bat Algorithm (BAT), and the
Firefly Algorithm (FFA). They were implemented from the EvoloPy optimiza-
tion library [12] and are available at TBU’s AlLab GitHub repository’. The
control parameters were tuned for each algorithm separately in [26].

To explore the inner dynamics of the optimizers diversity of the algorithms
was examined using the diversity computation metric from [36]. Figure 5.1
shows the mean diversity on the first three problems of the CEC 2015 test set,
however the Bison Algorithm maintained the same diversity rate on the rest of
the tested problems as well. Figure 5.2 shows all the error value convergences
on IEEE CEC’17 F4 problem. The sudden drops indicate an escape from local
optima, when the running group found a promising solution. When compared

to other optimizers, these sudden drops happened more frequently.

The most common method of performance analysis is to investigate the error
values of the final solutions. Table 5.1 and Table 5.2 summarize the Wilcoxon
Rank-Sum test results (p<0.05). The tests count the number of problems
where one algorithm performed significantly better than all the remaining al-
gorithms. The problems were compared with the Friedman Rank test (p<0.05)
in Figure 5.3. This test ranks the algorithms and sets the significance threshold
as the Nemenyi critical distance; the algorithms over the distance performed

significantly worse than the first-ranked algorithm.

"https://github.com/TBU-AILab/Bison-Algorithm-00P, accessed 02/06/2022
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Tab. 5.1 Winning Algorithms on CEC 2015 (Wilcozon Rank-Sum test,

p<0.05).
None BIA CS PSO BAT FFA
10 dimensions 6 3 5 0 1 0

30 dimensions 4 5 3 0
50 dimensions 5 4 3 0
100 dimensions 4 5 0 0

Sum of wins 19 17 11 0

O Ot DN DN

1
1
1
4

Tab. 5.2 Winning Algorithms on CEC 2017 (Wilcoxon Rank-Sum test,

p<0.05).
None BIA CS PSO BAT FFA
10 dimensions 7 7 13 1 0 2
30 dimensions 3 14 6 1 0 6
50 dimensions 7 10 5 1 0 7
100 dimensions 6 11 2 1 0 10
Sum of wins 23 42 26 4 0 25
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Fig. 5.3 Rank comparison of the BIA, CS, PSO, BAT, and FFA on
benchmarks CEC 2015 and CEC 2017 (Friedman Rank Test, p<0.05).

The Bison Algorithm was generally successful when statistically compared to
other swarm optimizers in most tested scenarios. However, despite the success
against swarm optimizers selection, the proposed algorithm was also compared

to the competition winners of the examined benchmark test sets - SPS L
SHADE? and EBO with CMAR?, and did not outperform them.

Yet the ultimate goal of the experiment was not to prove the Bison Algorithm’s
superiority to the state-of-the-art optimizers. The main focus of the develop-
ment was to create a tool to fight the local optimum containment. Hence,
the next Section analyses, how the algorithm deals with the local optimum

containment challenge in practice.

8https://github.com/P-N-Suganthan/CEC2015-Learning-Based accessed 13/06/2022
‘https://github.com/P-N-Suganthan/CEC2017-BoundContrained, accessed 13/06/2022
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5.2 Local Optimum Containment Challenge

The algorithms were compared with respect to the characteristics of the solved
problems. Based on the benchmark definitions [1], the problems from CEC
2017 benchmark test set were classified into selected classes. The results were
then examined with the Wilcoxon Rank-Sum test (Figure 5.4) on the corre-

sponding test sets across all dimensions.

The Bison Algorithm was especially successful when solving multimodal prob-
lems, problems with many local optima and problems with second best opti-
mum far from the global best. Interestingly, all of these attributes point to
a higher risk of the local optimum containment challenge, which the Bison

Algorithm surpassed.

Multimodal Many local optima Second best is far
problems from global best
None
o None
None 17% FFA 13%

FFA
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NV
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Fig. 5.4 Performance measure comparing the number of problems with a
significantly better solution on the set with characteristic feature (Wilcozon

p<0.05).
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6 CONTRIBUTION TO SCIENCE AND PRAC-
TICE

6.1 Does the World Need Yet Another Swarm Algo-

rithm?

The excess of metaphor-based algorithms has been clearly stated as a ma-
jor risk factor of current metaheuristics. More than 320 algorithms escalated
into various troubles like the duality of algorithms, scepticism of any “novel”
technique, or open disdain for metaheuristics [34]. How could creating a new

algorithm help?

It is important to acknowledge that even reviewers’ scowls cannot ultimately
end the development of new algorithms; very likely, new metaheuristics would
arise despite generic opposition. Nevertheless, to prevent substandard produc-
tion, it is vital to find a way of avoiding the recurrent mistakes that are often

connected to new metaheuristic proposals. That is the goal of this work.

For meaningful development, the Author proposed rules for future design of
novel swarm and metaheuristic algorithms and created the Bison Algorithm
a proof of concept of these guidelines. Following the recommendations, the
development was aimed at a common yet poignant problem of local optimum
containment. As a result, an algorithm was born with interesting results for

solving problems with many local optima.

One without the other would not make any difference. Suggesting a set of
recommendations without their application would be just another invitation
to improve metaheuristic practice with minimal impact. Developing a new
algorithm without good scientific practice would, in fact, only reinforce the in-
appropriate “substandard” label on novel metaheuristics. But together, these
two concepts may benefit new metaheuristics that are yet to be created. Ulti-
mately, to answer the title question, reflecting the reservations and trying raise

the standard of metaheuristic proposals is what the world certainly needs.
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6.2 Applications of the Bison Algorithm

The most valuable contribution of swarm algorithms lies in quick solutions to
complex real-life problems, including transportation, energy, logistics, or social
networks [9]. Real-life problems need efficient real-time solutions. Although
the metaheuristic approach does not guarantee finding the exact optimum,

'good" solutions are often sufficient.

The Bison Algorithm was successfully used to optimize 3 PID controllers — the
water tank test, mass spring damper, DC motor, and their cascade versions in
[24]. The problems were defined to maintain the desired water level & in the
tank by changing the water inflow, to maintain the desired position sx of mass
my by managing the control force F', and to maintain the desired motor speed

w* by managing input voltage F'.

The experiment compared five optimizers: the Genetic Algorithm (GA), Dif-
ferential Evolution (DE), Particle Swarm Optimization, the Cuckoo Search,
and the Bison Algorithm, and examined the differences between standard ver-
sus cascade PID controllers. Figure 6.1 summarizes the time consumption of
each algorithm, and the best and worst result statistics of the optimizers: on
how many of the six examined problem scenarios one algorithm deliver supe-
rior or inferior results to all the others. The paper concluded that the Bison
Algorithm delivered top results (in a 5% range from the best-found results) in

the majority of the tested problems.

The Bison Seeker Algorithm was applied as a hybrid method of symbolic re-
gression in [30]. The algorithm outclassed basic symbolic regression even with
a non-standard parameter setting of very few iterations and small populations.
Figure 6.2 shows the percentual success rate of various instances of hybrid Bi-
son Seeker Algorithm Symbolic Regression compared to standard Symbolic

Regression.
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Fig. 6.1 Metaheuristic comparison: a) average time consumption of each
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6.3 Dissertation Goal Fulfillment

This section describes the steps taken to fulfill the dissertation goals, which

were set as follows:

1. Map the current scene of modern swarm algorithms, its trends, and
challenges.

2. Investigate the methods addressing the weaknesses of swarm algorithms.

3. Propose a set of recommendations for new metaheuristics creation.

4. Proof of concept testing: Implement the proposed recommendations
and methods in a new swarm algorithm.

5. Evaluate the benefits of the proposed algorithm for applied sciences.

There are multiple challenges in the development and modification of bio-
inspired swarm algorithms. Mapping the current scene of modern metaheuris-
tics and current trends revealed a variety of both optimization and existential
problems. To answer the former, Section 3.1 named the methods address-
ing the optimization problems, while Section 3.2 proposed guidelines to avoid
the existential ones. Furthermore, the recommendations for novel metaheuris-
tics development were applied to prove the concept, as a new swarm-based
algorithm was proposed and tested. Section 4.6 introduced several algorithm
modifications, including a self-adaptive variant, as a modern modification trend
representative. Finally, Section 6 evaluated the benefits of the proposed algo-

rithm and its applications.

7 CONCLUSION

Nowadays, most new metaheuristics go round in circles repeating the same
mistakes and facing prejudicial disrespect regardless of the actual quality of
the presented method. Many researchers, scientists, and practitioners stand up
against common malpractice and try to influence future metaheuristics towards
a better standard. Most recently, at the turn of 2020/2021, a great number
of publications dedicated to benchmarking issues and fairness in comparison,
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were published. However, advising a better approach, or pointing out others’

mistakes, is not as powerful as applying the change proposed.

This work describes the current scene of the swarm algorithms, the state-of-the-
art optimization techniques, modification trends, and reservations about the
pitfalls of novel metaheuristic development. Detecting two types of struggles:
optimization problems like stagnation or premature convergence, and existen-
tial problems connected to the criticism mentioned above, the Author proposes
a new standard for developing future metaheuristics. But most importantly,
these recommendations are applied to a showcase development project of a

new swarm-based algorithm.

Following the recommendations led to the creation of an algorithm designed to
tackle local optimum containment. The Bison Algorithm proposes a systemati-
cal scanning of the search space independently of the exploitation process. The
suggested technique offers a way out of stagnation caused by local optimum
confinement. Yet, it should be easy to implement for all kinds of problems

from discrete, continuous, to large-scale, or other optimizations.

The algorithm was thoroughly examined, tested, and compared to other swarm
optimization methods on the sum of 45 functions of IEEE CEC 2015 and 2017.
The results show that the proposed algorithm is exceptionally competent when

solving problems with many local optima.

Solving the recurrent problems of metaheuristic optimization may open the
way for new challenges. The future might hold exciting discoveries like al-
gorithm similarity detection systems, automatically assembled Al-based opti-
mizers, neuroevolution, or new unexplored methods to tackle ubiquitous opti-

mization problems.

This work did not aim to disclaim the No Free Lunch Theorem. It did not
attempt to create a superlative optimizer that would solve every known pos-
sible problem. In fact, it aimed even higher. By setting preliminary rules and
leading the way, this work presents one of many steps towards a meaningful

development of metaheuristics yet to be created.
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