

Mobile Application for Learning Japanese Alphabet

Ivan Goriakin

Bachelor's thesis
2024

I hereby declare that:
• I understand that by submitting my Bachelor´s Thesis, I agree to the publication of my

work according to Law No. 111/1998, Coll., On Universities and on changes and
amendments to other acts (e.g. the Universities Act), as amended by subsequent legis-
lation, without regard to the results of the defence of the thesis.

• I understand that my Bachelor´s Thesis will be stored electronically in the university
information system and be made available for on-site inspection, and that a copy of the
Bachelor´s Thesis will be stored in the Reference Library of the Faculty of Applied In-
formatics, Tomas Bata University in Zlín, and that a copy shall be deposited with my
Supervisor.

• I am aware of the fact that my Bachelor´s Thesis is fully covered by Act No. 121/2000
Coll. On Copyright, and Rights Related to Copyright, as amended by some other laws
(e.g. the Copyright Act), as amended by subsequent legislation; and especially, by §35,
Para. 3.

• I understand that, according to §60, Para. 1 of the Copyright Act, TBU in Zlín has the
right to conclude licensing agreements relating to the use of scholastic work within the
full extent of §12, Para. 4, of the Copyright Act.

• I understand that, according to §60, Para. 2, and Para. 3, of the Copyright Act, I may use
my work - Bachelor´s Thesis, or grant a license for its use, only if permitted by the
licensing agreement concluded between myself and Tomas Bata University in Zlín with
a view to the fact that Tomas Bata University in Zlín must be compensated for any
reasonable contribution to covering such expenses/costs as invested by them in the cre-
ation of the thesis (up until the full actual amount) shall also be a subject of this licensing
agreement.

• I understand that, should the elaboration of the Bachelor´s Thesis include the use of
software provided by Tomas Bata University in Zlín or other such entities strictly for
study and research purposes (i.e. only for non-commercial use), the results of my Bach-
elor´s Thesis cannot be used for commercial purposes.

• I understand that, if the output of my Bachelor´s Thesis is any software product(s),
this/these shall equally be considered as part of the thesis, as well as any source codes,
or files from which the project is composed. Not submitting any part of this/these com-
ponent(s) may be a reason for the non-defence of my thesis.

I herewith declare that:
• I have worked on my thesis alone and duly cited any literature I have used. In the case

of the publication of the results of my thesis, I shall be listed as co-author.
• That the submitted version of the thesis and its electronic version uploaded to IS/STAG

are both identical.

In Zlín; 10.05.2024:
 Student´s Signature

Ivan Goriakin
 Ivan Goriakin v.r.

ABSTRAKT

Tato diplomová práce zkoumá vývoj mobilní aplikace zaměřené na výuku japonské abe-

cedy, se zaměřením na využití frameworku Flutter pro multiplatformní funkčnost. Studie

primárně prozkoumává pokroky v technologiích multiplatformního vývoje, s důrazem na

možnosti Flutteru. Poskytuje podrobný pohled na složitosti japonského písemného systému

a detaily procesu designu a implementace aplikace. Project zahrnují návrh uživatelského

rozhraní a tvorbu interaktivních modulů usnadňujících výuku abecedy. Výběr architektury

aplikace a technologií je řízen jejich potenciálem zlepšit zkušenost s učením jazyka.

Klíčová slova: Flutter framework, Dart, Multiplatformní vývoj, Android, IOS, Japonská

abeceda

ABSTRACT

This diploma thesis explores the development of a mobile application aimed at learning the

Japanese alphabet, with a focus on utilizing the Flutter framework for cross-platform func-

tionality. The study primarily investigates the advancements in multiplatform development

technologies, emphasizing the capabilities of Flutter. It provides an in-depth look at the in-

tricacies of the Japanese writing system and details the design and implementation process

of the application. Project include user interface design and the creation of interactive mod-

ules to facilitate alphabet learning. The selection of the application's architecture and tech-

nologies is driven by their potential to enhance the language learning experience.

Keywords: Flutter framework, Dart, Multiplatform development, Android, IOS, Japanese

alphabet:

ACKNOWLEDGEMENTS
Acknowledgements, motto and a declaration of honour saying that the print version of the

Bachelor's/Master's thesis and the electronic version of the thesis deposited in the IS/STAG

system are identical, worded as follows:

I hereby declare that the print version of my Bachelor's/Master's thesis and the electronic

version of my thesis deposited in the IS/STAG system are identical.

CONTENTS

INTRODUCTION ... 9
THEORY .. 10

1 MOBILE DEVELOPMENT ECOSYSTEM .. 11
1.1 OVERVIEW OF MOBILE OPERATING SYSTEMS .. 11

1.1.1 Android .. 11
1.1.2 IOS ... 11
1.1.3 Windows Mobile ... 12

1.2 HISTORY OF MOBILE OPERATING SYSTEMS .. 12
1.3 UNDERSTANDING MOBILE DEVICES' CAPABILITIES AND LIMITATIONS. 13

2 MULTIPLATFORM DEVELOPMENT TECHNOLOGIES 14
2.1 BRIEF INTRODUCTION TO VARIOUS MULTIPLATFORM TECHNOLOGIES 15
2.2 KEY FEATURES AND ARCHITECTURAL PRINCIPLES. ... 15

3 COMPARATIVE ANALYSIS OF MULTIPLATFORM FRAMEWORKS 17
3.1 FLUTTER ... 17

3.1.1 Detailed exploration focusing on performance, UI/UX capabilities, and
developer ecosystem. ... 20

3.2 REACT NATIVE ... 21
3.2.1 Analysis of development efficiency, access to native APIs, and community
support. .. 22

3.3 XAMARIN (. NET MAUI) ... 24
3.3.1 Examination of cross-compatibility, integration with Microsoft technology
stack, and development tools. .. 25

3.4 OTHER NOTABLE FRAMEWORKS .. 26
3.4.1 Ionic ... 26
3.4.2 NativeScript ... 26

4 CHALLENGES IN MOBILE APPLICATION DEVELOPMENT 27
4.1 ADDRESSING THE INTRICACIES OF DEVELOPING FOR MULTIPLE PLATFORMS. 27
4.2 HANDLING DIVERSE DEVICE CAPABILITIES, SCREEN SIZES, AND USER INTERACTION
MODES. ... 28

5 JAPANESE LANGUAGE ... 29
5.1 JAPANESE WRITING SYSTEM .. 29

5.1.1 Hiragana ... 29
5.1.2 Katakana .. 29
5.1.3 Kanji .. 29

5.2 CHALLENGES IN LEARNING JAPANESE SCRIPTS .. 30
5.2.1 Adaptation for Mobile Learning .. 30

ANALYSIS ... 31
6 APPLICATION DEVELOPMENT STRATEGY .. 32

6.1 STACK ... 32

7 IMPLEMENTATION OF THE MOBILE APPLICATION 33
7.1 FLUTTER DEVELOPMENT ENVIRONMENT SETUP ... 34

7.2 BUILDING THE APPLICATION .. 39
7.2.1 Solution Structure .. 39
7.2.2 Pages Structure .. 40
7.2.3 Models Structure .. 68

7.3 INTERACTIVE LEARNING MODULES .. 79

8 USER MANUAL .. 89
CONCLUSION .. 95

BIBLIOGRAPHY .. 97
LIST OF ABBREVIATIONS ... 100

LIST OF FIGURES ... 101
APPENDICES .. 102

TBU in Zlín, Faculty of Applied Informatics 9

INTRODUCTION

TBU in Zlín, Faculty of Applied Informatics 10

I. THEORY

TBU in Zlín, Faculty of Applied Informatics 11

1 MOBILE DEVELOPMENT ECOSYSTEM

Mobile development ecosystem that includes a wide range of technologies and frameworks

designed to develop software for smartphones and tablets running on wireless computing

devices. But this ecosystem is a constantly evolving and dynamic one, driven by improve-

ments in both hardware and operating system features and user preferences. But in order to

create interesting and user-friendly applications, developers need to navigate this complex

landscape.

1.1 Overview of mobile operating systems

Mobile operating systems (OS) are the foundation of the mobile development ecosystem,

providing the needed platform for applications to run. These operating systems manage the

device's hardware resources and provide the necessary services for mobile applications.

Some of the most well-known mobile operating systems are Android, iOS and, most notably

historically, Windows Mobile, each of which provides unique development environments

and user experiences. [1]

1.1.1 Android

One of the most widely used operating systems for mobile devices is Android, developed by

Google. As of May 2022, 71.4% of the smartphone market, is occupied by Android. Android

is open source, making it a cheaper solution for many developers. Also due to the popularity

of the system, it has a large user base and a wide range of compatible devices. The system is

very flexible and allows for more precise customization. The Android OS itself is imple-

mented on Linux, by a developer named Andy Rubin. Because Android is implemented on

Linux, it allows Android to be easily integrated into many smart devices such as smart

watches, TVs and even refrigerators. [1, 2]

1.1.2 IOS

The creation of one of the leading mobile operating systems, IOS, began in the garage, with

no one at that time unknown to Steve Jobs. He had an idea to make a touch screen for a

computer. As the system developed, as well as with the appearance of the first prototype, it

was decided to use the touch screen for cell phones, so in 2007, along with the first iPhone

appeared the first working version of IOS written specifically for Apple mobile devices.

TBU in Zlín, Faculty of Applied Informatics 12

However, at first it was called iPhone OS and only with the release of iPhone 4 was renamed

to the familiar name IOS.

The basis for IOS was the operating system for computers, MacOS at the time it was still

called "OS X", which was installed on company computers and laptops. In fact, IOS received

a new interface and trimmed functionality from MacOS, at the same time, the core they had

almost identical. [1, 3]

1.1.3 Windows Mobile

Windows OS was released by Microsoft in 2010. The first phone to receive Windows OS

was the HTC 7 Mozart. The system was not badly made and was quite safe (compared to the

Android system). But did not take root among users, third-party developers did not hurry to

develop under the new system, which led to problems for users of Windows OS, often users

simply could not find the application they need in the application store. At the same time,

Microsoft itself provided free access to some of its applications, which of course was no

compensation for the inability to use the usual applications. Now a bit of history, the project

started under the name "Photon", in 2004, but was extremely slow and as a result it was

closed. Later, in 2008, Microsoft decided to reassemble the development team and start

working on a new Windows Mobile operating system. The first public announcement of the

new mobile operating system was on February 15, 2010, at Mobile World Congress 2010,

when Steven Ballmer first announced the new Windows Phone 7 mobile system. The first

official version was released on October 10, 2010. [4]

1.2 History of mobile operating systems

The evolution of mobile operating systems (OS) has been a fascinating journey that shows

how quickly technology is changing. At first, basic OSs ran on simple cell phones with lim-

ited features. But in the late 1990s and early 2000s, more sophisticated systems like Palm

OS and BlackBerry OS emerged, which introduced features like email and basic web surfing.

This led to the creation of smartphones.[5]

The release of Apple's iOS in 2007 and Google's Android in 2008 marked a turning point in

the mobile OS landscape. These platforms revolutionised smartphones, turning them into

versatile devices capable of performing a variety of tasks such as navigation, gaming, shop-

ping, and banking. This shift has also led to the decline of older systems such as Windows

Mobile and Symbian, which were unable to adapt to the touchscreen paradigm.[5]

TBU in Zlín, Faculty of Applied Informatics 13

Right now, Android and iOS are the top dogs in the global market, and they're pushing the

development and design of mobile apps. They're always evolving because people want more

secure, user-friendly, and feature-rich environments that let them create sophisticated apps

to meet different user needs. [1][5][6]

1.3 Understanding mobile devices' capabilities and limitations.

Mobile devices have become very popular, offering tons of convenience and functionality.

However, their design and how they are used are influenced by a few key things that deter-

mine what they can and can't do. For example, screen size affects how content is displayed

and interacted with, so designers need to make everything simple and easy to use.[1]

Battery life is another important thing to think about because the portability of mobile de-

vices depends on whether they can work for a long time. This means that apps need to be

designed to consume as little power as possible so that they don't drain the battery.[1, 2]

The amount of processing power and memory available also affects how complex tasks can

be. Today's smartphones are getting more powerful, but developers still need to think across

a wide range of different devices to make their apps accessible to as many people as possible.

To solve these problems, developers often use offline functionality or data caching. This

ensures that users get a good experience even if they are offline or have slow internet.[1]

It's important to understand these limitations when you're developing a mobile app. They

affect the design of the app, how users interact with it, and its success in the market.

TBU in Zlín, Faculty of Applied Informatics 14

2 MULTIPLATFORM DEVELOPMENT TECHNOLOGIES

Multi-platform mobile development has become one of the most popular trends in software

development in recent years. This approach allows the same code to be used on different

platforms, saving money, time and effort. According to We Are Social Inc. and Hootsuite

Inc. in their Digital 2020 report, the number of internet users worldwide is growing at a rate

of 9 people per second, which means that more than 800,000 people join the online world

every year. A day via desktop or mobile devices. Interestingly, the latter option is becoming

more popular every month. Globally, the penetration of mobile devices in everyday life is

driving the overall growth of the mobile market. It can be said that by 2024, three quarters

of con- sumers worldwide will be using cell phones. According to StatCounter, the share of

desktop computers will drop to 45.66%. The simplest explanation is changes in our life-

styles. We are using the internet more and more. Almost all of us have a cell phone or tablet.

Consider the fact that the average user spends almost 7 hours a day on the internet, and more

than half of that traffic comes from our phones. Hence, this is actively driving the growth of

the mobile app market. The experience of using mobile apps is irresistible. Global mobile

app revenue was $461 billion in 2019, and revenue from paid downloads and advertising

could exceed $935 billion by 2023, according to a Statista report published last year. [6, 7]

Multi-platform app for both systems. Cross-platform refers to the ability of software (in this

case, a mobile app) to run on multiple platforms. Cross-platform development for mobile

devices allows you to use the same code on both iOS and Android operating systems. This

approach eliminates the need to write code in a low-level programming language and pro-

vides an almost natural user experience through the use of a visual interface and customiza-

ble controls. This makes mobile app development easier and cheaper, which is no small part

for any business. Many companies are now using cross-platform solutions, and some are

already seriously considering switching to them in the foreseeable future. This applies not

only to solution providers such as Facebook and its React Native, on which Facebook and

Instagram apps run, but also to other important market players who already have products

on Flutter, such as Alibaba, Philips Hue, Hamilton. Tencent, Grab, Groupon and others.

Below we will look at a few of the platform's main solutions for managing cross-platform

development.[11]

TBU in Zlín, Faculty of Applied Informatics 15

2.1 Brief introduction to various multiplatform technologies

As we have already realized, multi-platform frameworks allow us to reach a wider audience

at a lower cost. The benefit is that these frameworks translate applications into their original

code. This means that we don't need to write an app for each platform - we can create one

app with the help of a framework, and the framework will take care of the rest, compiling

the code for each platform.

Every business wants to save money, and multi-platform frameworks can help us do just

that. We don't need to hire different developers for each platform - one app can be used on

multiple platforms thanks to the framework. Let’s take a look at some of the most popular

mobile development frameworks: Flutter from Google and Xamarin and MAUI from Mi-

crosoft. These frameworks are used by some of the biggest and most well-known companies,

such as Google Pay, BMW, eBay and Alibaba, who have mobile applications built with these

frameworks. [15]

For example, Google Pay uses Flutter to create its mobile payment app. BMW also uses

Flutter for its mobile app, as does eBay. Alibaba has also used Flutter to develop its mobile

apps. [15]

On the other hand, MAUI, developed by Microsoft, is also used by several well-known com-

panies. For instance, NBC Sports Next and Escola Agil use MAUI to create their mobile

apps. [16]

2.2 Key features and architectural principles.

One of the main advantages of using multi-platform tools is their ability to address each

platform's native APIs. This allows developers to take advantage of features specific to each

platform, such as access to camera, location, and sensors. This ensures optimal performance

and a seamless user experience.

In addition, multi-platform frameworks provide a consistent coding experience across plat-

forms, reducing development time and effort. This is achieved by utilizing common code

bases and libraries that are shared across platforms.

Another benefit of using such frameworks is the ability to develop more scalable and main-

tainable applications. With a common code base, developers can easily update and maintain

the application on different platforms. Another significant advantage of using a common

code base is that it allows applications to run on different platforms simultaneously, making

TBU in Zlín, Faculty of Applied Informatics 16

it easier to maintain and update them. This reduces the overall time and effort required to

manage applications because changes can be made and tested in a centralized location.

With CI/CD, developers can automate the testing and deployment process, ensuring that

applications are always up to date and functioning properly. This leads to a smoother and

more efficient workflow, as bugs are quickly identified and fixed, and changes are imple-

mented quickly and easily.

TBU in Zlín, Faculty of Applied Informatics 17

3 COMPARATIVE ANALYSIS OF MULTIPLATFORM

FRAMEWORKS

This section aims to provide a comprehensive analysis and comparison of several leading

multi-platform development frameworks. We will evaluate their performance, user interface,

user experience features, development environment, access to native application program-

ming interfaces, and level of community support.

3.1 Flutter

Flutter is a free and open-source framework for mobile user interface development, was de-

veloped by Google in May 2017. It is also a multi-platform framework for mobile application

development, based on a single programming language - Dart. Flutter is also aimed at work-

ing with complex user interfaces, animations, perhaps at the moment it is one of the leading

multi-platform frameworks for working with mobile applications, as it has great flexibility.

Flutter targets two important areas: [9, 12]

SDK: A set of tools that facilitates app development, including compilers that convert your

code into native machine code for iOS and Android.[13]

Framework: A widget-based UI library that includes functional UI elements such as buttons,

text boxes, and sliders that can be customized.[12]

Flutter uses Dart to write the code, which was also developed by Google in October 2011

and has been greatly improved in recent years. Dart originally focused on web development,

but it can also be used to create mobile and web applications.

Flutter supports working with systems such as:

Android, IOS, Web, Windows OS, MacOS, Linux, Embedded devices [14]

Architectural layers

Flutter is built in such a way that it consists of several independent libraries, where each

layer relies on the functionality of the one below it. This architecture ensures that no layer

has privileged access to the layer below it, which encourages modular and customizable

design. Each component of the framework is made optional and replaceable, allowing de-

velopers to tailor the system to their specific needs or replace parts of the framework without

breaking the overall architecture. This design philosophy allows for extensive customization

and scalability, facilitating the development of a wide range of applications that can take

advantage of Flutter's capabilities. [9, 12]

TBU in Zlín, Faculty of Applied Informatics 18

Figure 1 Flutter architectural layers [9]

Flutter design includes a well-defined layered architecture that makes it easy to create re-

sponsive and dynamic user interfaces. Here's an exploration of its key concepts and compo-

nents: [9, 12]

Layer Model: Flutter is built using a hierarchical layer model, where each layer consists of

modular independent libraries. These layers are layered sequentially on top of each other,

with no layer having special access to the layer below, allowing for high customization and

scalability. [9]

Reactive user interfaces. Flutter's UI design philosophy is based on a reactive approach to

user interfaces. This model ensures that any changes to the application's state are immedi-

ately reflected in the user interface, providing a dynamic and interactive user experience. [9]

Introduction to widgets. Widgets are the basic building blocks of Flutter user interfaces.

They define the structural elements, stylistic elements, and layout aspects that serve as the

primary method for developers to interact with the platform. [9]

TBU in Zlín, Faculty of Applied Informatics 19

Rendering Process: Flutter converts the UI code into pixels on the screen using the render-

ing process. This requires taking widget descriptions and turning them into a series of ren-

dering commands that render the user interface in detail and fluidly. [9]

Overview of embedded platforms. Built-in platforms are very important for running Flutter

applications on various operating systems such as iOS, Android, Windows and others. They

handle important tasks such as surface rendering, input handling, and integration with other

native code. [9]

Integrate Flutter with other code: Flutter provides various methods of integration with

other codebases and libraries, allowing you to reuse existing code and introduce new fea-

tures. These include using platform channels to interact with native code and using packages

to enable external functionality. [9]

Web support. Flutter web support allows you to deploy apps in the browser using the same

basic principles and components of Flutter. This support ensures that Flutter apps can main-

tain consistent behavior and performance across desktop, mobile, and web platforms.

Each of these components plays an important role in making Flutter an effective tool for

building modern, multi-platform applications. [9]

Flutter applications targeting underlying operating systems are compiled in the same way as

traditional native applications. Each platform-specific module acts as a gateway, facilitating

interaction with the operating system for functions such as UI rendering, adaptive access and

data entry, and message management and event handling. These platform modules are built

using native languages: Java and C++ for Android, Objective-C and Objective-C++ for iOS

and macOS, and C++ for Windows and Linux. This allows Flutter to be integrated as a mod-

ule into existing applications or used as the core content of an application, supported by a

variety of embeddable modules adapted to common platforms. [9]

Central to Flutter's operation is its engine, written primarily in C++, which performs im-

portant tasks such as rasterising scenes for frame rendering. It provides fundamental support

for Flutter applications, including graphics processing (currently via Impeller on iOS and

soon on Android, as well as Skia on other platforms), text creation, file and network opera-

tions, accessibility features, plugin architecture, and the Dart runtime and compilation envi-

ronment. [9]

The engine interacts with the Flutter framework through the dart:ui library, which wraps

basic C++ code in Dart classes, making lower-level operations such as input control and

graphics rendering available. [9]

TBU in Zlín, Faculty of Applied Informatics 20

Developers interact with Flutter through its framework, a modern reactive system developed

in the Dart language. This framework consists of several layers: [9]

Base Classes and Services: These include basic functionality such as animation, drawing,

and gesture recognition, offering fundamental abstractions over the platform infrastructure.

[9]

Rendering Layer: This layer abstracts layout management, allowing developers to create and

modify an object tree that is dynamically updated to reflect any changes. [9]

Widget Layer: In this layer, each rendering object is associated with a widget class, making

it easy to define and reuse combinations of classes in a reactive programming environment.

[9]

Material and Cupertino libraries: These libraries provide a complete set of controls that con-

form to Material Design or iOS aesthetics using the compositional primitives of the widget

layer. [9]

In addition, the Flutter framework remains relatively compact, and many advanced function-

alities are provided through external packages. These packages offer both platform-specific

plugins, such as for camera or webviews, and platform-independent features, such as net-

working and animation, built on top of the underlying Dart and Flutter libraries. [9]

3.1.1 Detailed exploration focusing on performance, UI/UX capabilities, and devel-

oper ecosystem.

Flutter architecture achieves superior productivity by compiling Dart code directly into na-

tive machine code, bypassing the need for intermediate interpretation.

This compilation approach improves execution efficiency and accelerates application re-

sponsiveness. Consequently, applications developed with Flutter run faster and are more re-

source-efficient than those that rely on a virtual machine for interpretation.

In terms of UI and UX, Flutter provides developers with a complete set of tools to create

highly responsive and visually appealing applications. Its extensive widget library supports

the creation of customizable and dynamic interfaces that easily adapt to different screen sizes

and device orientations, providing a seamless and engaging user experience across all plat-

forms.

From a developer's perspective, Flutter creates a beneficial ecosystem that significantly re-

duces development challenges. Its unified codebase approach allows developers to write

once and deploy across multiple platforms such as iOS, Android, Windows and the web.

This cross-platform capability not only simplifies the development process but also speeds

TBU in Zlín, Faculty of Applied Informatics 21

up the time to market for apps. Moreover, the strong support from Flutter's vibrant commu-

nity and Google's continued investment in the framework provides developers with a wealth

of resources, best practices, and opportunities to collaborate, creating a dynamic and sup-

portive development environment.

This review highlights Flutter's performance advantages, its ability to create versatile user

interfaces, and the benefits of its developer-friendly ecosystem that contribute to its popu-

larity and effectiveness as a development platform. [17, 18]

3.2 React Native

Figure 2 React Native new Architecture [8]

React Native is a very popular JavaScript-based framework used to create mobile applica-

tions for iOS and Android. This allows developers to write the same code for both platforms,

thereby saving time and resources. With React Native, you can create apps that run on both

iOS and Android without creating two separate apps. Facebook launched React Native as an

open-source project in 2015, and since then it has become a popular choice for mobile app

development. It is used by many large companies such as Instagram, Facebook and Skype.

The main reason for the success of React Native is that it allows you to write code once and

use it on iOS and Android devices. This saves a lot of time and effort during the development

process. It is also based on the React JavaScript library that most developers know. This

means web developers can easily transition to building mobile apps using React Native with-

out having to learn a whole new language.

TBU in Zlín, Faculty of Applied Informatics 22

To understand where React Native comes from, we need to remember when Facebook tried

to create a mobile website. They decided to use HTML5, but it didn't work the way they

wanted. Then they realized they needed a better solution and React Native was born. In 2012,

Facebook CEO Zuck realized he was too reliant on HTML5 and needed to try something

new. This is how React Native was born. It was first released in 2014 and has been a game

changer ever since. Allows you to create mobile applications using JavaScript.

Initially, React Native was only for iOS, but later they added support for Android. In 2015,

everyone used it. Now this is one of the most popular photographs in the world.

The impact of React Native has been huge. This not only changed the way apps are built,

but also impacted the entire industry. It was the second most popular project on Github in

2018, and its popularity continues to grow. In 2019 it took sixth place in popularity. Ad-

vantages of local reaction: [19]

React Native is implemented on the React Framework and does not require WebView or

HTML to work.

React Native solves the problems of its predecessors; it is designed to work with an adaptive

interface, that is, previously developers had to come up with algorithms to display the inter-

face correctly on different devices. React Native, in turn, has this right. hood.

React Native doesn't use DOM API.

It is designed for creating mobile applications based on Android and IOS.

It allows you to work with complex designs and animations.

It is used to create universal apps for Android, iOS, tvOS, macOS, Android TV, Windows,

web and Windows platform.

It is compatible with Android, iOS, Android TV, macOS, tvOS and Microsoft Windows

[20].

3.2.1 Analysis of development efficiency, access to native APIs, and community sup-

port.

Through enabling the creation of both iOS and Android applications from a single JavaScript

codebase, React Native has altered the trajectory of app development. This approach con-

solidates the coding effort, significantly cutting down on the time and resources traditionally

spent on maintaining distinct codebases for various platforms, thus making React Native an

efficient and economical option for developers aiming for multi-platform reach.

React Native is acclaimed for its seamless interaction with native APIs, granting developers

the latitude to maximize the performance and features of core platforms, breaking free from

TBU in Zlín, Faculty of Applied Informatics 23

the usual restrictions of frameworks aimed at multiple platforms. By weaving JavaScript

with native elements, the user experience approaches the quality and fluidity of native apps.

The framework enables the integration of bespoke modules, tapping into the innate charac-

teristics and functions of the operating systems to craft compelling and interactive app ex-

periences.

The vibrant community that has rallied around React Native constitutes a substantial portion

of its appeal. A robust, engaged collective has organically emerged, giving rise to a wealth

of React Native-specific libraries, tools, and frameworks. Participation in this proactive

open-source environment goes beyond code contributions; it extends to problem-solving,

feature advancements, and the invention of new functionalities within React Native, offering

developers a rich repository of knowledge and tools that facilitate and enhance the app cre-

ation process.

This community-focused nature of React Native places developers at the vanguard of mobile

tech innovation. The framework's open-source ethos encourages a spectrum of developer

contributions, fostering a culture of shared inventive problem-solving. This dynamic ensures

that React Native stays abreast of technological advancements, supporting a wide range of

devices and platforms, which now includes not just mobile but also web, tvOS, macOS,

Android TV, and Windows.

To conclude, React Native epitomizes a model of effective and progressive development

practices, fusing direct access to native APIs with the strength of a supportive community,

thereby continuously broadening the horizons of what can be accomplished in the realm of

cross-platform mobile application development. [22]

TBU in Zlín, Faculty of Applied Informatics 24

3.3 Xamarin (. NET MAUI)

Figure 3 .NET MAUI Architecture [23]

.NET MAUI marks a watershed moment for developers by eliminating the need to create

multiple versions of an application for different platforms. This innovation allows develop-

ers to write code just once and deploy it across multiple platforms, resulting in notable sav-

ings in time and financial resources.

With .NET MAUI, developers have access to state-of-the-art rendering engines that provide

smooth animations and reduced load times, as well as improved memory management for

increased application stability.

Moreover, the versatility of .NET MAUI allows applications to run on a variety of platforms

including iOS, Android, macOS and Windows, increasing potential market reach and device

compatibility.

One of the hallmarks of .NET MAUI is its ability to facilitate the creation of attractive and

responsive user interfaces that easily adjust to different screen sizes and orientations, provid-

ing an optimal look and feel on any device. Tools from the .NET ecosystem, such as Xama-

rin, simplify the process of creating applications with .NET MAUI. Integrated development

environments such as Visual Studio and Visual Studio Code provide robust platforms for

coding, troubleshooting, and application refinement.

TBU in Zlín, Faculty of Applied Informatics 25

Backed by a robust Microsoft infrastructure and reinforced by a vibrant open-source com-

munity, .NET MAUI takes advantage of shared knowledge and collective support, offering

developers a treasure trove of resources to improve application development.

In addition, .NET MAUI's compatibility with the entire .NET stack allows developers to use

familiar libraries and tools, speeding up the development process and fostering more robust

applications.

In essence, .NET MAUI provides a unified solution for cross-platform application develop-

ment by providing all the necessary components in one consolidated package, allowing you

to extend application functionality without spending too much development time.[24, 25]

3.3.1 Examination of cross-compatibility, integration with Microsoft technology

stack, and development tools.

.NET MAUI simplifies app creation by allowing developers to use a single code base for

apps across multiple platforms, facilitating cross-compatibility. This unified approach eases

workflow and extended the reach of apps by allowing them to serve users on iOS, Android,

macOS, and Windows in a single development effort.

The use of .NET MAUI is tightly integrated with Microsoft's technology stack, which is part

of the extensive .NET framework. This allows developers to leverage Microsoft's well-

known collection of tools and resources, ensuring robust application performance and a con-

sistent development experience across all Microsoft offerings.

In terms of development tools, .NET MAUI comes with support for powerful IDEs such as

Visual Studio and Visual Studio Code, which create an optimised environment for writing,

troubleshooting and testing code. This favourable environment improves the efficiency of

the development process and helps you build high-quality applications faster.

The relationship between .NET MAUI and the .NET framework provides developers with a

flexible and rich development path. They benefit from an established ecosystem that pro-

vides a broad set of features, reducing the need to start from scratch and accelerating pro-

duction timelines.

What's more, the .NET MAUI's developer community and open-source code, backed by Mi-

crosoft's support, promise continuous improvement in the platform's capabilities and user

experience. This collaborative progress solidifies .NET MAUI's position as a technology

leader, offering developers a cost-effective and reliable solution for building complex, scal-

able applications across multiple platforms. [23, 26]

TBU in Zlín, Faculty of Applied Informatics 26

3.4 Other Notable Frameworks

3.4.1 Ionic

Ionic so presents itself as a multi-platform solution implemented on web technologies. As in

the above described frameworks allows you to develop for such platforms as Android, IOS,

as well as for windows 10 and above. At some point in its existence, Ionic even planned to

release its own IDE, but in 2020, after a failed attempt to implement the IDE, the company

decided to abandon its development and focus on improving the framework itself. [27, 28]

3.4.2 NativeScript

Another multi-platform framework, the main idea of which is to combine the framework

with popular web frameworks such as Angular and Vue.js allowing developers to use famil-

iar tools and practices when creating mobile applications. In addition, NativeScript provides

access to each platform's API, allowing you to utilize all native features such as camera,

geolocation and more.

NativeScript is supported and promoted by Progress and a community of developers who

contribute to the development of the framework and the creation of additional modules and

plugins. [29]

TBU in Zlín, Faculty of Applied Informatics 27

4 CHALLENGES IN MOBILE APPLICATION DEVELOPMENT

After evaluating various multiplatform frameworks, I have chosen the Flutter framework

for developing my mobile application. My decision to opt for Flutter is influenced by its

demonstrated foresight and leadership in the realm of multiplatform frameworks. Flutter's

robust capabilities and strategic advances in facilitating cross-platform application devel-

opment have significantly contributed to its selection.

Figure 4 Cross-platform mobile frameworks used by software developers world-

wide from 2019 to 2022 [31]

4.1 Addressing the intricacies of developing for multiple platforms.

In light of my analytical assessment and previous experiences, it is imperative to

acknowledge that the supportability of a framework is critical, particularly in an environ-

ment where technological advancements are rapid, and devices are regularly updated, ne-

cessitating ongoing support from the framework. For instance, in the event that Android or

iOS introduces a new feature that influences core application functionalities, the robust and

actively engaged community surrounding Flutter is well-positioned to ensure that essential

tools and updates are expeditiously incorporated into the framework.

TBU in Zlín, Faculty of Applied Informatics 28

In my previous experience with the Xamarin framework during the development of an edu-

cational application for the Japanese alphabet [30], I faced many insurmountable challenges.

The importance of robust community support and the prevailing popularity of the framework

are integral elements; however, in the case of Xamarin, I encountered notable shortcomings,

including its limited adaptability to new features of mobile operating systems and incomplete

support for the capabilities of modern devices. In contrast, Flutter is different in that it pro-

vides an extensive set of tools and a comprehensive library of widgets, making it noticeably

easier to develop universal applications for a variety of devices. This adaptability of Flutter

is not just theoretical, it is validated by an active ecosystem that is constantly updated and

keeps it relevant and effective.

4.2 Handling diverse device capabilities, screen sizes, and user interac-

tion modes.

Developing applications that perform effectively across a variety of devices, with different

screen sizes and user interaction methods, requires a well-thought-out approach. Flutter ex-

cels in this area thanks to its flexible architecture:

Responsive Design: With Flutter's extensive set of widgets and layout mechanisms, I can

easily create flexible and responsive designs. This ensures that applications look and func-

tion perfectly across devices of all screen sizes, from the smallest smartphones to the largest

tablets.

Device Capability Utilization: Flutter enables developers to access and utilize the native

features and capabilities of operating systems, ensuring that applications can fully leverage

the potential of the hardware they run on. This includes everything from camera functions

to accelerometer data.

User Interaction Adaptability: Flutter supports various user interaction modes, including

touch, swipe, and tap, as well as traditional keyboard and mouse inputs. This adaptability is

ideal for ensuring a seamless user experience in a multi-platform environment.

Accessibility and Localization: Flutter's commitment to providing accessible and interna-

tionally adaptable applications is evident. It supports straightforward localization and inter-

nationalization options, making it possible to cater to users from diverse linguistic and cul-

tural backgrounds without extensive modifications to the core application.

TBU in Zlín, Faculty of Applied Informatics 29

5 JAPANESE LANGUAGE

Japanese is the main language of the Japanese language group. It is spoken by about 120

million people, mostly in Japan, where it is the official language. It is also widely used by

the Japanese diaspora around the world. [32]

The scope of Japanese language includes the predominant Japanese dialect as well as various

Ryukyuan languages. The origins of Japanese go back to Proto-Japanese, the common an-

cestor of modern Japanese and the Ryukyuan languages, which is believed to have been

brought to the islands from the Korean peninsula in the early to mid-fourth century BC.[32]

5.1 Japanese writing system

The Japanese writing system is unique and complex, employing three main types of scripts

that make it challenging for learners, particularly those not native to logographic systems.

[33]

5.1.1 Hiragana

Hiragana is one of two kana systems in Japanese, a syllabary used predominantly for native

Japanese words, grammatical elements, and inflections. It consists of 46 characters, each

representing a distinct sound or mora. Children in Japan typically begin their education by

learning Hiragana. It's also used to write words for which there is no Kanji, or in conjunction

with Kanji to indicate grammatical conjugations. [32, 33]

5.1.2 Katakana

Katakana, the other kana system, mirrors Hiragana in phonetic structure but is used primarily

to transcribe foreign words, loanwords, scientific names, and to provide emphasis or modern

flavor to text. Like Hiragana, it consists of 46 characters and serves a distinct function in

written Japanese by distinguishing foreign terms from native ones, which can be crucial in

understanding context and nuance. [32, 33]

5.1.3 Kanji

Kanji are logographic characters derived from Chinese. In modern Japanese, over 2,000

Kanji are in regular use. Each Kanji has one or several meanings and can be pronounced in

multiple ways depending on its context. Learning Kanji is considered one of the most chal-

lenging aspects of mastering the Japanese language due to its complexity and the sheer

TBU in Zlín, Faculty of Applied Informatics 30

volume of characters. Kanji conveys meaning visually and are crucial for understanding

deeper nuances in texts, making them indispensable despite their difficulty. [32, 33]

5.2 Challenges in Learning Japanese Scripts

5.2.1 Adaptation for Mobile Learning

Adapting Japanese writing for use in a mobile app poses several unique challenges. The app

will focus on two main features: flashcard memorization and writing tests. These functions

are designed to help students learn characters effectively.

The app will introduce you to the most basic kanji characters.

For hiragana and katakana, the app will use flashcards to promote character recognition and

memorization. Written tests will complement these by requiring users to practice writing the

characters on their own, which promotes muscle memory and memorization.

This approach aims to build a fundamental understanding of Japanese writing, ensuring that

students understand the basics of reading and writing, as well as the cultural context of the

language. Through this focused method, the app aims to make the first steps in learning

Japanese accessible and rewarding.

TBU in Zlín, Faculty of Applied Informatics 31

II. ANALYSIS

TBU in Zlín, Faculty of Applied Informatics 32

6 APPLICATION DEVELOPMENT STRATEGY

When planning out the development of the mobile application for learning the Japanese al-

phabet, I decided to go with Flutter, given its wide array of advantages. One of the main

reasons for choosing Flutter was its capability to manage both iOS and Android development

from a single source code. This not only makes the development cycle more efficient but

also helps in conserving resources. Flutter is known for its vast selection of widgets that can

be tailored to create detailed and interactive interfaces, which are key for educational apps

like this one. Additionally, Flutter’s direct compilation to native ARM code guarantees that

the app performs as well as any native application, ensuring a smooth user experience. Sup-

ported by a strong community and backed by Google, Flutter provides extensive documen-

tation and resources that facilitate troubleshooting and functional enhancements. Features

such as Hot Reload, which allows developers to see changes instantly without a restart, sig-

nificantly speed up the development process. Ultimately, Flutter’s comprehensive features

make it the top choice for building efficient, high-quality educational apps across various

platforms.

6.1 Stack

For my project, I selected the following technology stack:

• Dart

• Flutter

• Json Serializable

The Dart Build System includes builders designed to handle JSON. These builders automat-

ically produce code when they encounter members marked with annotations from the

json_annotation package. To enable JSON serialization and deserialization for a class, add

the JsonSerializable annotation to it. This annotation accepts arguments that allow you to

tailor the resulting code. Additionally, you can modify specific fields by using the JsonKey

annotation with appropriate arguments. For more information on the values of these annota-

tions, consult the table below. Furthermore, to create a Dart field containing data from a

JSON file, apply the JsonLiteral annotation. [34]

TBU in Zlín, Faculty of Applied Informatics 33

7 IMPLEMENTATION OF THE MOBILE APPLICATION

As the technologies had been selected, it became imperative to acquire a comprehensive

understanding of the initiation process for a new technology, including the determination of

an appropriate starting point. Concurrently, the decision regarding the choice of an Inte-

grated Development Environment (IDE) was necessary. Flutter applications are commonly

developed using Android Studio, VSCode, or IntelliJ. Given its simplicity and robust func-

tionality, coupled with my previous experience, I opted for VSCode. The specifications of

the computer used for development are detailed in Figure 5:

Figure 5 MacBook Characteristics

TBU in Zlín, Faculty of Applied Informatics 34

7.1 Flutter Development Environment Setup

Preparing to work with the Flutter framework began with an initial review of the official

documentation. This step is extremely important when starting out with any framework, as

it provides authoritative guidance and basic knowledge. The documentation first describes

the system requirements needed for development, as shown in Figure 6.

Figure 6 Hardware requirements. [35]

Next, due to the peculiarities of my operating system, it is necessary to install Rosseta 2

using the command you can see in Figure 7.

Figure 7 Install Rosseta 2.

After Rosseta 2 has been successfully installed, we will proceed to install the components

for working with Flutter. Now it is necessary to download Flutter itself. Since my operating

system is MacOS, I use the package manager Homebrew. Using the command you can see

in Figure 8, we install Flutter on the local machine.

TBU in Zlín, Faculty of Applied Informatics 35

Figure 8 Homebrew install Flutter. [36]

After a successful installation we need to find out what further components we need to work

with Flutter using the flutter doctor command you can see in Figure 9.

Figure 9 Flutter Doctor.

Also in Figure 9 we can see all the components that are required and their status. In my case,

I already have each required component installed. However, I will demonstrate the installa-

tion of each of them:

Flutter: Already downloaded you can see Figure 8.

Android toolchain: I use ToolBox by JetBrains for downloading Android Studio Figure 10.

[37]

TBU in Zlín, Faculty of Applied Informatics 36

Figure 10 JetBrains Toolbox Android Studio.

TBU in Zlín, Faculty of Applied Informatics 37

XCode: For install XCode I use AppStore, default application in MacOS. You can see install

in Figure 11.

Figure 11 XCode install.

Chrome: For install Chrome go to official Google Chrome website you can see in Figure

12. [38]

Figure 12 Install Chrome. [38]

VSCode: For install VSCode go to official website can see in Figure 13. [39]

TBU in Zlín, Faculty of Applied Informatics 38

Figure 13 Install VSCode. [39]

After successfully installing the required components, we can see the tests of the flutter doc-

tor command passing successfully can see Figure 9.

Now we can start preparing vscode for flutter development. The extensions only recom-

mended for comfortable development.

Extensions: Flutter, Dart, Flutter Color, Flutter Tree, Flutter-Stylizer, Json to Dart Model,

Prettier, Sort Lines, VSCode-Icons.

TBU in Zlín, Faculty of Applied Informatics 39

7.2 Building the Application

7.2.1 Solution Structure

Figure 14 Solution Structure.

.dart_tool: This directory is used by the Dart programming language for various SDK-

related files. It's generally auto generated and used internally by Dart.

.idea: Contains project settings specific to JetBrains IDEs, like IntelliJ IDEA or Android

Studio. It includes configurations such as code styles, project profiles, etc.

.vscode: Stores configurations for Visual Studio Code, such as settings for the editor, exten-

sions, and debug configurations.

android: Contains all the necessary files to build and run the app on Android devices, in-

cluding Gradle scripts and the Android manifest.

assets: A directory to store assets like images, audio, video and data files which are bundled

with the application when built.

TBU in Zlín, Faculty of Applied Informatics 40

Figure 15 Assets Structure.

In my case, I use the assets directory to store images and json data for Japanese alphabets

Figure 15.

build: Contains the output files from the build process, including intermediate files. This

directory is automatically generated when you build the application.

ios: Similar to the android directory but specifically for iOS. It contains the Xcode project

and configurations needed to build the iOS version of the app.

lib: The main directory for Dart code:

• loaders: Contains files that responsible for loading data or resources dynamically.

• models: Files defining the data model of the application.

• pages: Contain files for different screens/pages of the app.

linux, macos, windows: These directories contain platform-specific code to compile the app

on desktop operating systems using Flutter's desktop support.

web: Holds files that enable building the application for web browsers, leveraging Flutter's

web support.

This organized for a Flutter project, separating platform-specific code and assets, while

maintaining a clear path for main development in the `lib` directory. Each directory serves a

clear function, supporting multiple platforms and facilitating both development and testing

across them can see in Figure 14.

7.2.2 Pages Structure

In 7.2.1 I already touched on the Lib directory, now let's look at it in more detail.

TBU in Zlín, Faculty of Applied Informatics 41

Let's start with the fact that the main logic and implementation of the application is mostly

done in the Lib directory. For structured work, I have divided functions and modules into

separate directories, it allows better orientation in the project, as well as in the case of using

code by third-party developers, speeds up the process of their integration into the project

Figure 16.

Figure 16 Lib Directory.

The main file of any project is usually Main.dart (As part of Flutter development), and be-

cause of we`ll start from Main.dart.

import 'package:flutter/material.dart';
import 'package:provider/provider.dart';
import 'pages/welcome_page.dart';
import '../models/app_settings.dart';

void main() {

TBU in Zlín, Faculty of Applied Informatics 42

 WidgetsFlutterBinding.ensureInitialized();
 runApp(MyApp());
}

class MyApp extends StatelessWidget {
 const MyApp({super.key});

 @override
 Widget build(BuildContext context) {
 return ChangeNotifierProvider<AppSettings>(
 create: (_) => AppSettings(),
 child: MaterialApp(
 debugShowCheckedModeBanner: false,
 title: 'Japanese Learning App',
 theme: ThemeData(
 colorScheme: ColorScheme.fromSeed(seedColor: Colors.blue),
 useMaterial3: true,
),
 home: WelcomePage(),
),
);
 }
}

Imports:

• `flutter/material.dart`: This import includes Material Design widgets that are visually

consistent and customizable.

• `provider/provider.dart`: This import allows the application to manage state using the

Provider package.

• `pages/welcome_page.dart`: Imports the WelcomePage widget, the first screen that

users see when launching the application.

• `../models/app_settings.dart`: Imports the AppSettings class, which, is used to store

and manage the settings of the entire application.

Main function:

• main(): The main entry point of any Dart program. It calls WidgetsFlutterBinding.en-

sureInitialised() to initialize the framework bindings before running the application,

which is necessary for the plugins to be configured before `runApp()` is executed.

• runApp(MyApp()): This function inflates the given widget and binds it to the screen.

It is the root of the widget tree that will be built.

MyApp class:

TBU in Zlín, Faculty of Applied Informatics 43

• MyApp: A widget that extends `StatelessWidget`, which means that it does not man-

age any internal state changes.

• It returns a ChangeNotifierProvider<AppSettings>, which sets the provider for the

AppSettings object. This allows child widgets to access AppSettings and respond to

changes to it throughout the application.

• The MaterialApp widget is used as a child of the ChangeNotifierProvider. It includes

several widgets that often need to be accessed within the application, such as for

navigation and theming.

• debugShowCheckedModeBanner: Set to false to remove the debug banner that ap-

pears in the top right corner in debug mode.

• title: A string describing the application, used by the device to identify the application

by a user-friendly title.

• theme: Defines the visual design of the application. ThemeData is set to a blue colour

scheme and uses Material Design 3 features (`useMaterial3: true`).

• home: The first screen displayed in the application, configured with WelcomePage().

The next step was to create the pages of the app. Usually the work of Frontend and Backend

developers is divided into roles, but in the case of my application, I acted as a fullstack

developer. The interface of the pages will be presented below.

7.2.2.1 Welcome Page:

class WelcomePage extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 Size screenSize = MediaQuery.of(context).size;

 return Scaffold(
 body: Stack(
 children: [
 Container(
 width: screenSize.width,
 height: screenSize.height,
 child: Image.asset(
 'images/bgwelcome.png',
 fit: BoxFit.cover,
),
),
 positionedButton(context, 'KANA', KanaPage(), 0.2, false),
 positionedButton(
 context, 'KANJI BASIC', KanjiBasicPage(), 0.35, true),
 positionedButton(context, 'SETTING', SettingAppPage(), 0.5, false),

TBU in Zlín, Faculty of Applied Informatics 44

],
),
);
 }

 Widget positionedButton(BuildContext context, String title, Widget page,
 double top, bool isLeftAligned) {
 BorderSide borderSide = BorderSide(color: Colors.black, width: 2);
 Size screenSize = MediaQuery.of(context).size;

 double fontSize = screenSize.width * 0.06;
 double padding = screenSize.width * 0.08;

 return Positioned(
 top: screenSize.height * top,
 left: isLeftAligned ? null : null,
 right: isLeftAligned ? null : 0,
 child: Container(
 decoration: BoxDecoration(
 border: Border(
 top: borderSide,
 bottom: borderSide,
 left: isLeftAligned ? BorderSide.none : borderSide,
 right: isLeftAligned ? borderSide : BorderSide.none,
),
),
 child: Material(
 color: Colors.transparent,
 child: InkWell(
 onTap: () => Navigator.push(
 context,
 MaterialPageRoute(builder: (context) => page),
),
 child: Container(
 padding:
 EdgeInsets.symmetric(horizontal: padding, vertical: padding),
 child: Text(
 title,
 style: TextStyle(
 color: Colors.black,
 fontSize: fontSize,
),
),
),
),
),
),
);
 }
}

TBU in Zlín, Faculty of Applied Informatics 45

WelcomePage Class

• Extends StatelessWidget: Indicates that this widget does not manage any internal

state.

• build Method: Constructs the UI elements to be rendered by this widget.

• Size screenSize: Retrieves the size of the screen to adjust the layout dynamically

based on the device's screen size.

Scaffold Widget

• Used as the primary visual structure for the page, which scaffolds various UI com-

ponents together.

• Body: Composed of a Stack widget, allowing overlay of elements.

Children of Stack

1) Background Container:

o Covers the entire screen (width and height set to match the screen dimen-

sions).

o Displays an image (images/bgwelcome.png) as a full-screen background with

the image scaled to cover the entire viewing area.

2) Positioned Buttons:

o Three calls to a custom method positionedButton to create buttons that navi-

gate to different pages (KanaPage, KanjiBasicPage, SettingAppPage).

o Buttons are positioned at different vertical levels (top is a proportion of the

screen height) and are designed to toggle alignment (left or right) through the

isLeftAligned parameter.

o Each button has a dynamic size and font based on screen width, ensuring

scalability across different device sizes.

positionedButton Function

• Parameters: BuildContext context, String title, Widget page, double top, bool isLef-

tAligned.

• Returns a Positioned widget that places a clickable button at the specified vertical

position.

• Container Decoration:
o A border that changes based on whether the button is left or right aligned, making

the border dynamic and visually indicating the alignment.

TBU in Zlín, Faculty of Applied Informatics 46

• Material & InkWell:

o Used for visual effects on touch such as ripples and to handle tap gestures which

trigger navigation using a MaterialPageRoute to the respective pages.

The implemented interface can be seen in Figure 17.

Figure 17 Welcome Page.

7.2.2.2 Kana Page:

class KanaPage extends StatefulWidget {
 @override
 _KanaPageState createState() => _KanaPageState();
}

class _KanaPageState extends State<KanaPage> {
 int _selectedIndex = 0;
 final PageController _pageController = PageController(keepPage: true);

TBU in Zlín, Faculty of Applied Informatics 47

 void _onItemTapped(int index) {
 setState(() {
 _selectedIndex = index;
 _pageController.animateToPage(index,
 duration: Duration(milliseconds: 300), curve: Curves.easeInOut);
 });
 }

 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(title: Text('Kana Learning')),
 body: PageView(
 controller: _pageController,
 onPageChanged: (index) {
 setState(() {
 _selectedIndex = index;
 });
 },
 children: [
 HiraganaPage(),
 KatakanaPage(),
],
),
 bottomNavigationBar: BottomNavigationBar(
 items: <BottomNavigationBarItem>[
 BottomNavigationBarItem(
 icon: Image.asset('images/iconhi.png', width: 24, height: 24),
 label: 'Hiragana',
),
 BottomNavigationBarItem(
 icon: Image.asset('images/iconka.png', width: 24, height: 24),
 label: 'Katakana',
),
],
 currentIndex: _selectedIndex,
 selectedItemColor: Colors.amber[800],
 onTap: _onItemTapped,
),
);
 }
}

Class Definition

• KanaPage: A StatefulWidget that will rebuild when state changes, due to user inter-

actions or internal events.

• _KanaPageState: The state class for KanaPage, which holds the logic and mutable

state for the widget.

TBU in Zlín, Faculty of Applied Informatics 48

State Management

• _selectedIndex: A variable to keep track of the currently selected tab or page.

• _pageController: Manages the page being displayed in a PageView. The keepPage

flag is set to true to maintain the page state when switching between tabs.

Navigation and Page Control

_onItemTapped: A function that is triggered when a BottomNavigationBar item is tapped. It

updates _selectedIndex and animates the PageView to the selected page.

Widget Build Method

• Scaffold:

o AppBar: Displays a simple app bar with a title "Kana Learning".

o Body: Uses a PageView widget for swipeable pages between Hiragana and

Katakana.

§ onPageChanged: Callback that updates _selectedIndex when pages

are swiped manually.

§ Children:

• HiraganaPage(): A widget showing content related to Hira-

gana.

• KatakanaPage(): A widget for learning Katakana.

• BottomNavigationBar:

o Items: Defines two items with icons and labels for Hiragana and Katakana.

§ Hiragana item uses an image asset 'images/iconhi.png'.

§ Katakana item uses an image asset 'images/iconka.png'.

o currentIndex: Indicates the currently selected item based on _selectedIndex.

o selectedItemColor: Specifies the color of the selected item to enhance visi-

bility, here using Colors.amber[800].

o onTap: Connects to _onItemTapped to handle item selection.

The implemented interface can be seen in Figure 18, Figure 19.

7.2.2.3 Hiragana Page:

class HiraganaPage extends StatefulWidget {
 @override
 _HiraganaPageState createState() => _HiraganaPageState();
}

TBU in Zlín, Faculty of Applied Informatics 49

class _HiraganaPageState extends State<HiraganaPage>
 with AutomaticKeepAliveClientMixin {
 final HiraganaDataLoader _dataLoader = HiraganaDataLoader();
 late Future<List<List<Kana>>> _dataFuture;
 late List<bool> checkedStatus;

 @override
 bool get wantKeepAlive => true;

 @override
 void initState() {
 super.initState();
 _dataFuture = _dataLoader.loadKanaData();
 _dataFuture.then((data) {
 checkedStatus = List.filled(data.length, false);
 });
 }

 @override
 Widget build(BuildContext context) {
 super.build(context);
 return Scaffold(
 body: FutureBuilder<List<List<Kana>>>(
 future: _dataFuture,
 builder: (context, snapshot) {
 if (snapshot.connectionState == ConnectionState.waiting) {
 return Center(child: CircularProgressIndicator());
 } else if (snapshot.hasError) {
 return Center(child: Text('Error: ${snapshot.error}'));
 } else if (snapshot.hasData) {
 var floatingActionButton;
 if (shouldShowButton(snapshot.data!)) {
 floatingActionButton = FloatingActionButton(
 heroTag: 'hiraganaFAB',
 onPressed: () {
 Set<int> selectedIndexes = Set<int>();
 for (int i = 0; i < checkedStatus.length; i++) {
 if (checkedStatus[i]) selectedIndexes.add(i);
 }

 Navigator.push(
 context,
 MaterialPageRoute(
 builder: (context) => TestSettingsPage(
 selectedIndexes: selectedIndexes,
 dataLoader: _dataLoader,
),
),
);
 },

TBU in Zlín, Faculty of Applied Informatics 50

 child: Icon(Icons.navigate_next),
);
 }
 return Scaffold(
 floatingActionButton: floatingActionButton,
 body: ListView.builder(
 itemCount: snapshot.data!.length,
 itemBuilder: (context, index) {
 return CheckboxListTile(
 title: buildKanaGroup(snapshot.data![index]),
 value: checkedStatus[index],
 onChanged: (bool? value) {
 setState(() {
 checkedStatus[index] = value!;
 });
 },
 controlAffinity: ListTileControlAffinity.leading,
);
 },
),
);
 } else {
 return Center(child: Text('No data available'));
 }
 },
),
);
 }

 bool shouldShowButton(List<List<Kana>> data) {
 int countLessThanFour = 0;
 int totalSelected = 0;

 for (int i = 0; i < checkedStatus.length; i++) {
 if (checkedStatus[i]) {
 int numChars = data[i].where((kana) => kana.kana.isNotEmpty).length;
 totalSelected++;
 if (numChars < 4) {
 countLessThanFour++;
 }
 }
 }
 bool shouldShow =
 (totalSelected - countLessThanFour > 0) || (countLessThanFour >= 2);

 return shouldShow;
 }

 Widget buildKanaGroup(List<Kana> kanaGroup) {
 return Container(
 padding: EdgeInsets.symmetric(vertical: 10, horizontal: 20),

TBU in Zlín, Faculty of Applied Informatics 51

 child: Column(
 crossAxisAlignment: CrossAxisAlignment.start,
 children: [
 Row(
 mainAxisAlignment: MainAxisAlignment.spaceEvenly,
 children: kanaGroup
 .map((kana) => Text(kana.kana,
 style:
 TextStyle(fontSize: 24, fontWeight: FontWeight.bold)))
 .toList(),
),
 SizedBox(height: 5),
 Row(
 mainAxisAlignment: MainAxisAlignment.spaceEvenly,
 children: kanaGroup
 .map((kana) => Text(kana.roumaji,
 style: TextStyle(fontSize: 18, color: Colors.grey[600])))
 .toList(),
)
],
),
);
 }
}

Class Definitions

• HiraganaPage: A StatefulWidget which creates its state from _HiraganaPageState.

• _HiraganaPageState: Manages the state of the HiraganaPage, including data loading

and user selections. It implements AutomaticKeepAliveClientMixin to keep the state

alive when switching tabs, ensuring that the state isn't disposed of when the user

navigates away.

Data Handling

• HiraganaDataLoader: Responsible for loading Hiragana character data, from a local

json file.

• _dataFuture: A Future that holds the asynchronously loaded data from _dataLoader.

• checkedStatus: A list that tracks which items (groups of Kana characters) are selected

by the user through checkboxes.

Lifecycle Methods

initState(): Initializes the _dataFuture and sets up checkedStatus based on the loaded data.

UI Build Process

TBU in Zlín, Faculty of Applied Informatics 52

• The build method uses FutureBuilder to handle the asynchronous nature of the data

loading:

o ConnectionState.waiting: Shows a loading spinner while data is being loaded.

o hasError: Displays an error message if the data fails to load.

o hasData: Renders the data as a list of checkbox list tiles, allowing users to

select different groups of Kana characters.

• A floating action button is conditionally rendered if the method shouldShowButton

returns true, indicating that the criteria for showing the button (based on selected

items and character counts) are met.

Navigation

The floating action button uses Navigator.push to navigate to the TestSettingsPage when

pressed, passing along the indexes of the selected Kana groups and the _dataLoader for fur-

ther use.

Helper Methods

• shouldShowButton: Determines whether the floating action button should be shown

based on the number of selected items and their character counts.

• buildKanaGroup: Constructs a widget that displays a group of Kana characters, both

in Hiragana script and their Romaji (Latin script).

The implemented interface can be seen in Figure 18.

TBU in Zlín, Faculty of Applied Informatics 53

Figure 18 Hiragana Page.

7.2.2.4 Katakana Page:

class KatakanaPage extends StatefulWidget {
 @override
 _KatakanaPageState createState() => _KatakanaPageState();
}

class _KatakanaPageState extends State<KatakanaPage>
 with AutomaticKeepAliveClientMixin {
 final KatakanaDataLoader _dataLoader = KatakanaDataLoader();
 late Future<List<List<Kana>>> _dataFuture;
 late List<bool> checkedStatus;

 @override
 bool get wantKeepAlive => true;

 @override

TBU in Zlín, Faculty of Applied Informatics 54

 void initState() {
 super.initState();
 _dataFuture = _dataLoader.loadKanaData();
 _dataFuture.then((data) {
 checkedStatus = List.filled(data.length, false);
 });
 }

 @override
 Widget build(BuildContext context) {
 super.build(context);
 return Scaffold(
 body: FutureBuilder<List<List<Kana>>>(
 future: _dataFuture,
 builder: (context, snapshot) {
 if (snapshot.connectionState == ConnectionState.waiting) {
 return Center(child: CircularProgressIndicator());
 } else if (snapshot.hasError) {
 return Center(child: Text('Error: ${snapshot.error}'));
 } else if (snapshot.hasData) {
 var floatingActionButton;
 if (shouldShowButton(snapshot.data!)) {
 floatingActionButton = FloatingActionButton(
 heroTag: 'katakanaFAB',
 onPressed: () {
 Set<int> selectedIndexes = Set<int>();
 for (int i = 0; i < checkedStatus.length; i++) {
 if (checkedStatus[i]) selectedIndexes.add(i);
 }

 Navigator.push(
 context,
 MaterialPageRoute(
 builder: (context) => TestSettingsPage(
 selectedIndexes: selectedIndexes,
 dataLoader: _dataLoader,
),
),
);
 },
 child: Icon(Icons.navigate_next),
);
 }
 return Scaffold(
 floatingActionButton: floatingActionButton,
 body: ListView.builder(
 itemCount: snapshot.data!.length,
 itemBuilder: (context, index) {
 return CheckboxListTile(
 title: buildKanaGroup(snapshot.data![index]),
 value: checkedStatus[index],

TBU in Zlín, Faculty of Applied Informatics 55

 onChanged: (bool? value) {
 setState(() {
 checkedStatus[index] = value!;
 });
 },
 controlAffinity: ListTileControlAffinity.leading,
);
 },
),
);
 } else {
 return Center(child: Text('No data available'));
 }
 },
),
);
 }

 bool shouldShowButton(List<List<Kana>> data) {
 int countLessThanFour = 0;
 int totalSelected = 0;

 for (int i = 0; i < checkedStatus.length; i++) {
 if (checkedStatus[i]) {
 int numChars = data[i].where((kana) => kana.kana.isNotEmpty).length;
 totalSelected++;
 if (numChars < 4) {
 countLessThanFour++;
 }
 }
 }
 bool shouldShow =
 (totalSelected - countLessThanFour > 0) || (countLessThanFour >= 2);

 return shouldShow;
 }

 Widget buildKanaGroup(List<Kana> kanaGroup) {
 return Container(
 padding: EdgeInsets.symmetric(vertical: 10, horizontal: 20),
 child: Column(
 crossAxisAlignment: CrossAxisAlignment.start,
 children: [
 Row(
 mainAxisAlignment: MainAxisAlignment.spaceEvenly,
 children: kanaGroup
 .map((kana) => Text(kana.kana,
 style:
 TextStyle(fontSize: 24, fontWeight: FontWeight.bold)))
 .toList(),
),

TBU in Zlín, Faculty of Applied Informatics 56

 SizedBox(height: 5),
 Row(
 mainAxisAlignment: MainAxisAlignment.spaceEvenly,
 children: kanaGroup
 .map((kana) => Text(kana.roumaji,
 style: TextStyle(fontSize: 18, color: Colors.grey[600])))
 .toList(),
)
],
),
);
 }
}

The Katakana page, has the same logic and structure as the Hiragana page, except for the

sub-characters.

The implemented interface can be seen in Figure 19.

TBU in Zlín, Faculty of Applied Informatics 57

Figure 19 Katakana Page.

7.2.2.5 Test Setting Page

class TestSettingsPage extends StatefulWidget {
 final Set<int> selectedIndexes;
 final KanaDataLoader dataLoader;

 const TestSettingsPage(
 {Key? key, required this.selectedIndexes, required this.dataLoader})
 : super(key: key);

 @override
 _TestSettingsPageState createState() => _TestSettingsPageState();
}

class _TestSettingsPageState extends State<TestSettingsPage> {
 String testType = 'card'; // card or write
 String direction = 'kanaToRomanji'; // kanaToRomanji or romanjiToKana

TBU in Zlín, Faculty of Applied Informatics 58

 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: const Text('Test Settings'),
),
 body: Center(
 child: SingleChildScrollView(
 child: ConstrainedBox(
 constraints: BoxConstraints(maxWidth: 600),
 child: Column(
 mainAxisAlignment: MainAxisAlignment.center,
 crossAxisAlignment: CrossAxisAlignment.center,
 children: [
 Padding(
 padding: const EdgeInsets.all(8.0),
 child: Text('Select Direction:',
 style: Theme.of(context).textTheme.headline6),
),
 ToggleButtons(
 children: <Widget>[
 Padding(
 padding: const EdgeInsets.symmetric(horizontal: 16),
 child: Text('Kana to Romanji'),
),
 Padding(
 padding: const EdgeInsets.symmetric(horizontal: 16),
 child: Text('Romanji to Kana'),
),
],
 isSelected: [
 direction == 'kanaToRomanji',
 direction == 'romanjiToKana'
],
 onPressed: (int index) {
 setState(() {
 direction =
 index == 0 ? 'kanaToRomanji' : 'romanjiToKana';
 });
 },
 color: Colors.grey,
 selectedColor: Colors.white,
 fillColor: Theme.of(context).primaryColor.withOpacity(0.7),
 borderColor: Theme.of(context).primaryColor,
 selectedBorderColor: Theme.of(context).primaryColor,
 borderRadius: BorderRadius.circular(8),
 borderWidth: 2,
 constraints: BoxConstraints(minHeight: 40),
),
 Padding(

TBU in Zlín, Faculty of Applied Informatics 59

 padding: const EdgeInsets.all(8.0),
 child: Text('Select Test Type:',
 style: Theme.of(context).textTheme.headline6),
),
 ToggleButtons(
 children: <Widget>[
 Padding(
 padding: const EdgeInsets.symmetric(horizontal: 16),
 child: Text('Card Test'),
),
 Padding(
 padding: const EdgeInsets.symmetric(horizontal: 16),
 child: Text('Write Test'),
),
],
 isSelected: [testType == 'card', testType == 'write'],
 onPressed: (int index) {
 setState(() {
 testType = index == 0 ? 'card' : 'write';
 });
 },
 color: Colors.grey,
 selectedColor: Colors.white,
 fillColor: Theme.of(context).primaryColor.withOpacity(0.7),
 borderColor: Theme.of(context).primaryColor,
 selectedBorderColor: Theme.of(context).primaryColor,
 borderRadius: BorderRadius.circular(8),
 borderWidth: 2,
 constraints: BoxConstraints(minHeight: 40),
),
 SizedBox(height: 20),
 ElevatedButton(
 onPressed: () {
 Navigator.push(
 context,
 MaterialPageRoute(
 builder: (context) => TestPage(
 selectedIndexes: widget.selectedIndexes,
 dataLoader: widget.dataLoader,
 testType: testType,
 direction: direction,
),
));
 },
 child: Text('Start Test'),
)
],
),
),
),
),

TBU in Zlín, Faculty of Applied Informatics 60

);
 }
}

Class Definition

• TestSettingsPage: A StatefulWidget that receives a set of selected indexes and a data

loader object through its constructor. These are used to configure and load the nec-

essary data for the test.

• _TestSettingsPageState: Maintains the state of the TestSettingsPage, managing the

test settings such as type and direction.

Constructor Parameters

• selectedIndexes: A set of integers representing the selected Kana groups for the test.

• dataLoader: An instance of KanaDataLoader used to load the specific Kana data for

the test.

State Variables

• testType: A string that toggles between "card" and "write" to determine the type of

test. "Card" imply a flashcard-style test, while "write" suggests a input-based test.

• direction: A string toggling between "kanaToRomanji" and "romanjiToKana" to set

the direction of question syllable in the test.

Build Method

• Scaffold:

o AppBar: Contains a simple title, "Test Settings".

o Body: A centered SingleChildScrollView that allows vertical scrolling when

the content exceeds the screen size, making it responsive to various device

sizes.

§ ConstrainedBox: Constrains its child widget to a maximum width of

600 pixels, centering the content in larger screens.

§ Column: Arranges its children vertically. It contains the UI elements

to select test settings:

§ Text: Displays labels such as "Select Direction:" and "Select Test

Type:".

TBU in Zlín, Faculty of Applied Informatics 61

§ ToggleButtons: Allows the user to select between options for direc-

tion and test type. Configured with visual properties like color, select-

edColor, fillColor, etc., enhancing the UI consistency with the app's

theme.

§ ElevatedButton: Triggers the start of the test by navigating to

TestPage with the current settings.

Functionality

• The ToggleButtons widgets let the user choose the test configuration. Pressing these

updates the state variables (testType and direction) and visually reflects the selection.

• The ElevatedButton at the bottom initiates the test by passing the configured settings

along with the selectedIndexes and dataLoader to TestPage, which presumably han-

dles the test execution.

Navigation

Uses Navigator.push to transition to the TestPage, passing along necessary parameters to

conduct the test based on user preferences.

The implemented interface can be seen in Figure 20.

TBU in Zlín, Faculty of Applied Informatics 62

Figure 20 Test Setting Page

7.2.2.6 Kanji Basic Page

class KanjiBasicPage extends StatelessWidget {
 Future<List<Kanji>> loadKanjiData() async {
 final String jsonString = await rootBundle.loadString('data/kanji.json');
 List<dynamic> kanjiDataJson = jsonDecode(jsonString);
 List<Kanji> kanjiData =
 kanjiDataJson.map((item) => Kanji.fromJson(item)).toList();
 return kanjiData;
 }

 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(title: Text('Kanji Basic Page')),
 body: FutureBuilder<List<Kanji>>(
 future: loadKanjiData(),

TBU in Zlín, Faculty of Applied Informatics 63

 builder: (context, snapshot) {
 if (snapshot.connectionState == ConnectionState.done) {
 if (snapshot.hasError) {
 debugPrint('Snapshot Error: ${snapshot.error}');
 return Center(
 child: Text("Error loading kanji data: ${snapshot.error}"));
 }

 return ListView.builder(
 itemCount: snapshot.data!.length,
 itemBuilder: (context, index) {
 Kanji kanji = snapshot.data![index];
 return Padding(
 padding: const EdgeInsets.symmetric(
 horizontal: 8.0, vertical: 4.0),
 child: Card(
 child: Padding(
 padding: const EdgeInsets.all(8.0),
 child: Row(
 crossAxisAlignment: CrossAxisAlignment
 .center,
 children: <Widget>[
 Container(
 width: 80,
 height: 80,
 alignment: Alignment
 .center,
 decoration: BoxDecoration(
 color: Colors.grey[200],
 borderRadius: BorderRadius.circular(8),
),
 child: Text(
 kanji.kanji ?? "N/A",
 style: TextStyle(
 fontSize: 32, fontWeight: FontWeight.bold),
),
),
 SizedBox(
 width:
 16),
 Expanded(
 child: Column(
 crossAxisAlignment: CrossAxisAlignment
 .start,
 children: <Widget>[
 Text(
 'Meaning: ${kanji.meaning ?? "Not availa-
ble"}',
 style: Theme.of(context)
 .textTheme
 .titleMedium),

TBU in Zlín, Faculty of Applied Informatics 64

 Text(
 'Reading:\nOnyomi: ${kanji.onyomi}\nKunyomi:
${kanji.kunyomi}',
 style:
 Theme.of(context).textTheme.bodyMedium),
],
),
),
],
),
),
),
);
 },
);
 } else {
 return Center(child: CircularProgressIndicator());
 }
 },
),
);
 }
}

KanjiBasicPage Class

This class is a StatelessWidget, meaning it doesn't hold any state changes internally after it's

built. The kanji data loading is managed through a Future to handle asynchronous data fetch-

ing.

Methods

• loadKanjiData: This asynchronous method loads a JSON file from the app's re-

sources, decodes it into a list of dynamic objects, and then maps these to a list of

Kanji model instances. This operation is performed using:

o rootBundle.loadString: To asynchronously load the JSON data from the

filesystem.

o jsonDecode: To convert the JSON string into a list of maps.

o Kanji.fromJson: A factory method of the Kanji class to instantiate objects

from the JSON data.

Widget Build Method

• Scaffold:

TBU in Zlín, Faculty of Applied Informatics 65

o AppBar: Contains a title, "Kanji Basic".

o Body: Implements a FutureBuilder that handles the future returned by load-

KanjiData().

§ ConnectionState.done: Checks if the asynchronous operation is com-

plete.

§ hasError: Displays an error message if there was an error loading or

parsing the kanji data.

§ hasData: If data is present, it renders a ListView.builder that dynam-

ically creates a list of kanji entries.

§ Each kanji is presented in a Card, which displays the kanji character

prominently and provides its meaning and readings (Onyomi and

Kunyomi).

§ The layout uses Row and Column to organize the kanji character and

its details nicely.

Error Handling and Debugging

Errors in data fetching or parsing are handled by checking snapshot.hasError, and if true,

logging the error and displaying an error message in the UI.

ListView.builder

• This widget is used to create a scrollable list of kanji cards. Each card contains:

• A container that visually highlights the kanji character.

• Text widgets that display the kanji's meaning and its readings.

The implemented interface can be seen in Figure 21.

TBU in Zlín, Faculty of Applied Informatics 66

Figure 21 Kanji Basic Page.

7.2.2.7 Setting App Page

class SettingAppPage extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 var appSettings = Provider.of<AppSettings>(context);
 return Scaffold(
 appBar: AppBar(title: Text('Setting App')),
 body: ListView(
 children: [
 SwitchListTile(
 title: Text('Enable Confetti Animation'),
 value: appSettings.enableConfetti,
 onChanged: (bool value) {
 appSettings.toggleConfetti();
 },
),

TBU in Zlín, Faculty of Applied Informatics 67

],
),
);
 }
}

SettingAppPage Class

Extends StatelessWidget: This means the widget does not have mutable state internally. Any

state changes are handled by the AppSettings model through the Provider.

Widget Build Method

• Scaffold:

o AppBar: Displays a simple AppBar with the title "Setting App".

o Body: Uses a ListView which can easily accommodate more settings in the

future:

§ SwitchListTile:

§ Title: Labeled "Enable Confetti Animation", indicates the purpose of

the switch.

§ value: The current state of the confetti animation setting, retrieved

from appSettings.enableConfetti, where appSettings is an instance of

the AppSettings model obtained from the Provider.

§ onChanged: A callback that gets triggered when the user toggles the

switch. It calls appSettings.toggleConfetti(), which toggles the ena-

bleConfetti boolean value in the AppSettings model.

Provider and AppSettings

• The Provider.of<AppSettings>(context) call fetches the AppSettings instance from

the nearest ancestor Provider in the widget tree, which manages the state of settings

like the confetti animation.

• This approach ensures that any changes to the settings are centrally managed and can

trigger UI updates where necessary. The Provider package helps manage state across

different parts of the app more cleanly and efficiently, reducing the need for callbacks

and manually passing data down the widget tree.

Functionality

TBU in Zlín, Faculty of Applied Informatics 68

The SwitchListTile widget provides a toggle switch for the user to enable or disable the

confetti animation feature. This interaction is simple and user-friendly, providing direct feed-

back on the state of the setting through the UI.

The implemented interface can be seen in Figure 22.

Figure 22 Setting App Page.

7.2.3 Models Structure

7.2.3.1 App Settings

class AppSettings extends ChangeNotifier {
 bool enableConfetti = true;

 void toggleConfetti() {
 enableConfetti = !enableConfetti;
 notifyListeners();
 }
}

AppSettings Class

• enableConfetti (Boolean Variable): A boolean property that determines whether con-

fetti animations are enabled or disabled in the app. It is initially set to true, indicating

that confetti animations are enabled by default.

• toggleConfetti (Method):

o This method toggles the state of the enableConfetti boolean. It achieves this

by setting enableConfetti to the opposite of its current value.

o notifyListeners(): After changing the value of enableConfetti, this method is

called. It's a part of the ChangeNotifier mixin and notifies any listeners that a

change has occurred. This is crucial in Flutter for triggering UI updates when

the underlying model changes.

TBU in Zlín, Faculty of Applied Informatics 69

7.2.3.2 Kana Option

class KanaOption {
 Kana kana;
 bool isEnabled;
 Color? color;

 KanaOption({
 required this.kana,
 this.isEnabled = true,
 this.color,
 });
}

KanaOption Class

Properties:

• kana (Kana): An instance of the Kana class. This property stores the specific Kana

character associated with this option. The Kana class is not defined in this snippet

but would contain attributes related to the Japanese Kana characters, such as the char-

acter itself, its pronunciation, and possibly other related data.

• isEnabled (bool): A boolean that indicates whether the Kana option is enabled or not

in the application's context. It defaults to true, meaning the Kana character is enabled

by default when an instance of KanaOption is created.

• color (Color?): An optional Color property that can be used to customize the appear-

ance of the Kana character in the UI, such as changing its color when displayed. The

property is nullable (Color?), indicating that it does not need to be set upon instanti-

ation of the class.

Constructor

KanaOption Constructor:

The constructor is defined with named parameters, requiring an instance of Kana and allow-

ing optional overrides for isEnabled and color.

Parameters:

• kana: Mandatory parameter. Every instance of KanaOption must be initialized with

a Kana object.

• isEnabled: Optional parameter with a default value of true.

• color: Optional parameter, nullable, with no default value. This allows for customi-

zation of the Kana display without enforcing a default color.

TBU in Zlín, Faculty of Applied Informatics 70

7.2.3.3 Kana

part 'kana.g.dart';

@JsonSerializable()
class Kana {
 String kana;
 String roumaji;
 String type;

 Kana({required this.kana, required this.roumaji, required this.type});

 factory Kana.fromJson(Map<String, dynamic> json) => _$KanaFromJson(json);
 Map<String, dynamic> toJson() => _$KanaToJson(this);
}

Part directive

part 'kana.g.dart': This directive links this file with a part file kana.g.dart that is generated by

running the build runner. This generated file contains part of the code necessary to serialize

and deserialize the data, specifically the implementation of the fromJson and toJson meth-

ods.

JsonSerializable Annotation

@JsonSerializable(): This annotation from json_annotation marks the Kana class as a target

for JSON serialization code generation. It tells the code generator to build the serialization

functionality automatically into the part file.

Kana Class

Properties:

• kana (String): Holds the Kana character. In Japanese, Kana refers to characters in

both the Hiragana and Katakana scripts.

• roumaji (String): Contains the Romaji (Latin script transcription) representation of

the Kana character.

• type (String): A string to categorize the Kana, possibly distinguishing between "Hi-

ragana" and "Katakana" or other types.

Constructor:

The constructor for Kana is defined with named parameters, each marked as required. This

ensures that an instance of Kana cannot be created without these essential values.

Factory Constructor fromJson:

TBU in Zlín, Faculty of Applied Informatics 71

A factory constructor named fromJson is defined, which uses the function _$KanaFromJson.

This function is expected to be in the generated file and is used to create a new instance of

Kana from a JSON map.

Method toJson:

The toJson method returns a map that represents the current state of the Kana instance. It

uses the _$KanaToJson function, which is also generated by the code generator.

7.2.3.4 Kana.g.dart. Part of Kana.dart

// GENERATED CODE - DO NOT MODIFY BY HAND

part of 'kana.dart';

// **
// JsonSerializableGenerator
// **

Kana _$KanaFromJson(Map<String, dynamic> json) => Kana(
 kana: json['kana'] as String,
 roumaji: json['roumaji'] as String,
 type: json['type'] as String,
);

Map<String, dynamic> _$KanaToJson(Kana instance) => <String, dynamic>{
 'kana': instance.kana,
 'roumaji': instance.roumaji,
 'type': instance.type,
 };

Part Directive

part of 'kana.dart';: This directive specifies that the code belongs to a part file linked to

kana.dart, meaning that it is a part of the same library and shares its scope.

JsonSerializable Generator Comment

Comment: The comment // GENERATED CODE - DO NOT MODIFY BY HAND and the

subsequent comment block indicate that the content is generated automatically by the Json-

SerializableGenerator. It is standard practice not to manually modify generated code, as any

changes will be overwritten when the code is regenerated.

Functions Generated

_$KanaFromJson(Map<String, dynamic> json):

• A factory constructor function that creates a new instance of the Kana class from a

JSON object.

TBU in Zlín, Faculty of Applied Informatics 72

• It reads the kana, roumaji, and type fields from the JSON map, explicitly casting

them to the String type to match the properties of the Kana class.

• This function is called during JSON deserialization, converting JSON data retrieved

from local storage into usable Kana objects.

_$KanaToJson(Kana instance):

• A function that converts a Kana instance back into a JSON map.

• It takes a Kana object and constructs a map containing its properties (kana, roumaji,

type), mapping them to the corresponding JSON keys.

7.2.3.5 Kanji

part 'kanji.g.dart';

@JsonSerializable()
class Kanji {
 final int number;
 final String? kanji;
 @JsonKey(defaultValue: '')
 final String onyomi;
 @JsonKey(defaultValue: '')
 final String kunyomi;
 final String? meaning;

 Kanji({
 required this.number,
 this.kanji,
 this.onyomi = '',
 this.kunyomi = '',
 this.meaning,
 });

 factory Kanji.fromJson(Map<String, dynamic> json) => _$KanjiFromJson(json);
 Map<String, dynamic> toJson() => _$KanjiToJson(this);
}

Part Directive

part 'kanji.g.dart'; This line indicates that the kanji.g.dart file is a part of this Dart file. The

kanji.g.dart file to contain the generated code for JSON serialization and deserialization

functions.

Annotations

TBU in Zlín, Faculty of Applied Informatics 73

• @JsonSerializable(): This annotation on the Kanji class enables the automatic gen-

eration of serialization and deserialization logic, which will be part of the kanji.g.dart

file. It simplifies the conversion process between a JSON map and a Kanji instance.

• @JsonKey: Used to specify configuration on how individual fields are handled dur-

ing serialization and deserialization. For instance, default values for fields can be

defined here.

Kanji Class Definition

Properties:

• final int number; - An identifier for the Kanji, representing an order or an index.

• final String? kanji; - The actual Kanji character. It's nullable, indicating that the Kanji

character might not always be provided.

• @JsonKey(defaultValue: '') final String onyomi; - Represents the Onyomi reading

(Chinese reading) of the Kanji. The defaultValue attribute ensures that if onyomi is

not present in the JSON, it defaults to an empty string.

• @JsonKey(defaultValue: '') final String kunyomi; - Represents the Kunyomi reading

(Japanese reading) of the Kanji. Similarly, it defaults to an empty string if not pro-

vided.

• final String? meaning; - The meaning of the Kanji character. It's nullable.

Constructor

Kanji constructor: Initializes a Kanji object with required and optional parameters. Required

parameters must be passed during object creation, while optional ones have default values

or are nullable.

Factory Constructor and Serialization Methods

• factory Kanji.fromJson(Map<String, dynamic> json) => _$KanjiFromJson(json); -

A factory constructor that creates an instance of Kanji from a JSON map. The actual

function _$KanjiFromJson is generated by the code generation package.

• Map<String, dynamic> toJson() => _$KanjiToJson(this); - Serializes the Kanji in-

stance into a JSON map. The function _$KanjiToJson handles the serialization pro-

cess and is also generated.

7.2.3.6 Kanji.g.dart. Part of Kanji.dart

// GENERATED CODE - DO NOT MODIFY BY HAND

TBU in Zlín, Faculty of Applied Informatics 74

part of 'kanji.dart';

// **
// JsonSerializableGenerator
// **

Kanji _$KanjiFromJson(Map<String, dynamic> json) => Kanji(
 number: (json['number'] as num).toInt(),
 kanji: json['kanji'] as String?,
 onyomi: json['onyomi'] as String? ?? '',
 kunyomi: json['kunyomi'] as String? ?? '',
 meaning: json['meaning'] as String?,
);

Map<String, dynamic> _$KanjiToJson(Kanji instance) => <String, dynamic>{
 'number': instance.number,
 'kanji': instance.kanji,
 'onyomi': instance.onyomi,
 'kunyomi': instance.kunyomi,
 'meaning': instance.meaning,
 };

Part Directive

part of 'kanji.dart';: This line indicates that the provided code is part of the kanji.dart file,

linking it back to the main library that defines the Kanji class.

Generated Code Comments

// GENERATED CODE - DO NOT MODIFY BY HAND: This comment warns developers

not to edit the file manually because any changes will be overwritten when the code is re-

generated. This ensures the integrity and functionality of the automatically generated serial-

ization code.

JsonSerializableGenerator

Comment Block: Describes the tool used (JsonSerializableGenerator) and marks this section

of the code as part of the serialization infrastructure.

Functions Generated

_$KanjiFromJson(Map<String, dynamic> json):

• A factory constructor function that creates a Kanji instance from a JSON object.

• Fields from the JSON object are parsed and appropriately cast to match the data types

defined in the Kanji class.

• Conversion Details:

• The number field is parsed as a number and converted to an integer.

TBU in Zlín, Faculty of Applied Informatics 75

• The kanji, onyomi, kunyomi, and meaning fields are nullable strings. The code

checks for null values and provides default values for onyomi and kunyomi if they

are absent ('' indicates an empty string if the field is not present).

_$KanjiToJson(Kanji instance):

• Converts a Kanji instance into a JSON map.

• Each field of the Kanji class is transformed into a key-value pair in the map. This

function ensures that all relevant properties of a Kanji instance are included in the

resulting JSON object, ready for serialization.

Structure:

It maps each property of Kanji to JSON keys. This structure directly corresponds to the fields

defined in the Kanji class, ensuring that all information is retained in the serialized form.

7.2.3.7 Kana Data Loader

import 'dart:convert';
import 'package:flutter/services.dart' show rootBundle;
import '../models/kana.dart';

class KanaDataLoader {
 final String jsonFilePath;

 KanaDataLoader({required this.jsonFilePath});

 Future<List<List<Kana>>> loadKanaData() async {
 final String jsonString = await rootBundle.loadString(jsonFilePath);
 List<dynamic> kanaDataJson = jsonDecode(jsonString);
 List<Kana> kanaData =
 kanaDataJson.map((item) => Kana.fromJson(item)).toList();
 return _createKanaGroups(kanaData);
 }

 List<List<Kana>> _createKanaGroups(List<Kana> kanaData) {
 List<List<Kana>> groups = [
 kanaData.sublist(0, 5), // a, i, u, e, o
 kanaData.sublist(5, 10), // ka, ki, ku, ke, ko
 kanaData.sublist(10, 15), // sa, shi, su, se, so
 kanaData.sublist(15, 20), // ta, chi, tsu, te, to
 kanaData.sublist(20, 25), // na, ni, nu, ne, no
 kanaData.sublist(25, 30), // ha, hi, fu, he, ho
 kanaData.sublist(30, 35), // ma, mi, mu, me, mo
 kanaData.sublist(35, 38), // ya, yu, yo
 kanaData.sublist(38, 43), // ra, ri, ru, re, ro
 [
 kanaData[43],

TBU in Zlín, Faculty of Applied Informatics 76

 Kana(kana: '', roumaji: '', type: ''),
 kanaData[45],
 Kana(kana: '', roumaji: '', type: ''),
 kanaData[44]
], // wa, wo, n
 kanaData.sublist(46, 51), // ga, gi, gu, ge, go
 kanaData.sublist(51, 56), // za, ji, zu, ze, zo
 kanaData.sublist(56, 61), // da, dji, dzu, de, do
 kanaData.sublist(61, 66), // ba, bi, bu, be, bo
 kanaData.sublist(66, 71), // pa, pi, pu, pe, po
 [
 kanaData[72], // kya
 Kana(kana: '', roumaji: '', type: ''),
 kanaData[73], // kyu
 Kana(kana: '', roumaji: '', type: ''),
 kanaData[74] // kyo
],
 [
 kanaData[75], // sha
 Kana(kana: '', roumaji: '', type: ''),
 kanaData[76], // shu
 Kana(kana: '', roumaji: '', type: ''),
 kanaData[77] // sho
],
 [
 kanaData[78], // cha
 Kana(kana: '', roumaji: '', type: ''),
 kanaData[79], // chu
 Kana(kana: '', roumaji: '', type: ''),
 kanaData[80] // cho
],
 [
 kanaData[81], // nya
 Kana(kana: '', roumaji: '', type: ''),
 kanaData[82], // nyu
 Kana(kana: '', roumaji: '', type: ''),
 kanaData[83] // nyo
],
 [
 kanaData[84], // hya
 Kana(kana: '', roumaji: '', type: ''),
 kanaData[85], // hyu
 Kana(kana: '', roumaji: '', type: ''),
 kanaData[86] // hyo
],
 [
 kanaData[87], // mya
 Kana(kana: '', roumaji: '', type: ''),
 kanaData[88], // myu
 Kana(kana: '', roumaji: '', type: ''),
 kanaData[89] // myo

TBU in Zlín, Faculty of Applied Informatics 77

],
 [
 kanaData[90], // rya
 Kana(kana: '', roumaji: '', type: ''),
 kanaData[91], // ryu
 Kana(kana: '', roumaji: '', type: ''),
 kanaData[92] // ryo
],
 [
 kanaData[93], // gya
 Kana(kana: '', roumaji: '', type: ''),
 kanaData[94], // gyu
 Kana(kana: '', roumaji: '', type: ''),
 kanaData[95] // gyo
],
 [
 kanaData[96], // ja
 Kana(kana: '', roumaji: '', type: ''),
 kanaData[97], // ju
 Kana(kana: '', roumaji: '', type: ''),
 kanaData[98] // jo
],
 [
 kanaData[99], // bya
 Kana(kana: '', roumaji: '', type: ''),
 kanaData[100], // byu
 Kana(kana: '', roumaji: '', type: ''),
 kanaData[101] // byo
],
 [
 kanaData[102], // pya
 Kana(kana: '', roumaji: '', type: ''),
 kanaData[103], // pyu
 Kana(kana: '', roumaji: '', type: ''),
 kanaData[104] // pyo
]
];

 List<int> specialRows = [35];

 for (var groupIndex = 0; groupIndex < groups.length; groupIndex++) {
 List<Kana> group = groups[groupIndex];
 if (specialRows.contains(groupIndex * 5)) {
 List<Kana> newGroup =
 List.filled(5, Kana(kana: '', roumaji: '', type: ''));
 for (var item in group) {
 if (item.roumaji.startsWith('y')) {
 int index = 'aiueo'.indexOf(item.roumaji[1]);
 newGroup[index] = item;
 }
 }

TBU in Zlín, Faculty of Applied Informatics 78

 groups[groupIndex] = newGroup;
 } else {
 while (group.length < 5) {
 group.add(Kana(kana: '', roumaji: '', type: ''));
 }
 }
 }
 return groups;
 }
}

class HiraganaDataLoader extends KanaDataLoader {
 HiraganaDataLoader() : super(jsonFilePath: 'data/hiragana.json');
}

class KatakanaDataLoader extends KanaDataLoader {
 KatakanaDataLoader() : super(jsonFilePath: 'data/katakana.json');
}

KanaDataLoader Class

Properties:

• jsonFilePath: A string that stores the path to the JSON file from which Kana data

should be loaded.

Constructor:

Requires a jsonFilePath to be provided, ensuring each instance of KanaDataLoader is asso-

ciated with a specific JSON data file.

loadKanaData Method:

• Asynchronously loads Kana data from the specified JSON file.

• Uses rootBundle.loadString to read the JSON file content as a string.

• Parses the JSON string into a dynamic list using jsonDecode.

• Converts this list into a list of Kana objects by mapping each item through the

Kana.fromJson factory method.

• Calls _createKanaGroups to organize these Kana objects into logical groups.

_createKanaGroups Method:

• Takes a list of Kana objects and organizes them into groups, which can be used to

structure learning sessions or UI displays.

• The grouping logic is hardcoded to segment the Kana into traditional groupings (like

vowels, k-group, s-group, etc.) and special combinations (like kya, kyu, kyo).

TBU in Zlín, Faculty of Applied Informatics 79

• It also handles special cases where some Kana characters need to be replaced or re-

positioned, especially for syllables that involve diacritics or are combinations.

HiraganaDataLoader and KatakanaDataLoader Classes

• These classes are specific implementations of KanaDataLoader tailored for loading

Hiragana and Katakana data, respectively.

Constructors:

They initialize the superclass KanaDataLoader with predefined paths to their respective

7.3 Interactive Learning Modules

Let's move on to the final point. Implementation of tests for learning the Japanese alphabet

is a complex file that includes the logic of test generation, checks and calculation of results.

Test Page:

import 'package:flutter/material.dart';
import 'dart:math';
import 'dart:async';
import 'dart:collection';
import '../loaders/kana_data_loader.dart';
import '../models/kana.dart';
import '../models/kana_option.dart';
import 'package:confetti/confetti.dart';
import 'package:provider/provider.dart';
import '../models/app_settings.dart';

class TestPage extends StatefulWidget {
 final Set<int> selectedIndexes;
 final KanaDataLoader dataLoader;
 final String testType;
 final String direction;

 const TestPage({
 super.key,
 required this.selectedIndexes,
 required this.dataLoader,
 required this.testType,
 required this.direction,
 });

 @override
 _TestPageState createState() => _TestPageState();
}

class _TestPageState extends State<TestPage> with TickerProviderStateMixin {
 late List<List<Kana>> testData;

TBU in Zlín, Faculty of Applied Informatics 80

 late KanaOption correctAnswer;
 late KanaOption questionSymbol;
 List<KanaOption> currentTestOptions = [];
 Queue<String> lastThreeSymbols = Queue<String>();

 bool isLoading = true;
 bool isAnswered = false;
 bool correct = true;
 int? shakeIndex;
 int correctAnswersStreak = 0;

 final TextEditingController _controller = TextEditingController();
 late AnimationController _shakeController;
 late Animation<Offset> _offsetAnimation;
 late AnimationController _bounceController;
 late Animation<double> _bounceAnimation;
 late ConfettiController _confettiController;

 @override
 void initState() {
 super.initState();
 loadTestData();

 _confettiController =
 ConfettiController(duration: const Duration(milliseconds: 500));
 _bounceController = AnimationController(
 duration: const Duration(milliseconds: 500), vsync: this);
 _shakeController = AnimationController(
 duration: const Duration(milliseconds: 300), vsync: this);

 _bounceAnimation =
 Tween<double>(begin: 0.0, end: -50.0).animate(CurvedAnimation(
 parent: _bounceController,
 curve: Curves.easeInOut,
));
 _offsetAnimation = Tween<Offset>(
 begin: const Offset(-0.02, 0.0), end: const Offset(0.02, 0.0))
 .animate(CurvedAnimation(
 parent: _shakeController,
 curve: Curves.elasticInOut,
));

 _bounceController.addStatusListener((status) {
 if (status == AnimationStatus.completed) {
 _bounceController.reverse();
 }
 });
 _shakeController.addStatusListener((status) {
 if (status == AnimationStatus.completed) {
 _shakeController.reverse();
 }

TBU in Zlín, Faculty of Applied Informatics 81

 });
 }

 @override
 void dispose() {
 _shakeController.dispose();
 _bounceController.dispose();
 _confettiController.dispose();
 super.dispose();
 }

 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: const Text('Test'),
 actions: <Widget>[
 Center(
 child: Padding(
 padding: const EdgeInsets.only(right: 16.0),
 child: Text('Streak: $correctAnswersStreak',
 style: TextStyle(fontSize: 18, fontWeight: FontWeight.bold)),
),
),
],
),
 body: Stack(
 children: [
 Padding(
 padding: const EdgeInsets.all(16.0),
 child: Column(
 mainAxisAlignment: MainAxisAlignment.spaceAround,
 children: [
 Expanded(
 child: AnimatedBuilder(
 animation: _bounceAnimation,
 builder: (context, child) {
 return Transform.translate(
 offset: Offset(0, _bounceAnimation.value),
 child: child,
);
 },
 child: Container(
 child: Center(
 child: Text(
 widget.direction == 'kanaToRomanji'
 ? questionSymbol.kana.kana
 : questionSymbol.kana.roumaji,
 style: const TextStyle(
 fontSize: 120, fontWeight: FontWeight.bold),
),

TBU in Zlín, Faculty of Applied Informatics 82

),
),
),
),
 widget.testType == 'card'
 ? buildOptionGrid()
 : buildInputField(),
],
),
),
 Align(
 alignment: Alignment.topCenter,
 child: ConfettiWidget(
 confettiController: _confettiController,
 blastDirectionality: BlastDirectionality.explosive,
 shouldLoop: false,
 colors: const [
 Colors.green,
 Colors.blue,
 Colors.pink,
 Colors.orange,
 Colors.purple
],
 numberOfParticles: 20,
 gravity: 0.3,
),
),
],
),
);
 }

 Widget buildOptionGrid() {
 return GridView.builder(
 shrinkWrap: true,
 physics: const NeverScrollableScrollPhysics(),
 gridDelegate: const SliverGridDelegateWithFixedCrossAxisCount(
 crossAxisCount: 2,
 childAspectRatio: 1.5,
 crossAxisSpacing: 15,
 mainAxisSpacing: 15,
),
 itemCount: currentTestOptions.length,
 itemBuilder: (BuildContext context, int index) {
 var option = currentTestOptions[index];
 bool isCorrectOption = widget.direction == 'kanaToRomanji'
 ? option.kana.roumaji == correctAnswer.kana.roumaji
 : option.kana.kana == correctAnswer.kana.kana;
 return AnimatedBuilder(
 animation: _shakeController,
 builder: (context, child) {

TBU in Zlín, Faculty of Applied Informatics 83

 final offset = shakeIndex == index
 ? sin(_shakeController.value * pi * 1.2) * 7
 : 0.0;
 return Transform.translate(
 offset: Offset(offset, 0),
 child: child,
);
 },
 child: ElevatedButton(
 onPressed: !isAnswered && option.isEnabled
 ? () => checkAnswer(
 index,
 widget.direction == 'kanaToRomanji'
 ? option.kana.roumaji
 : option.kana.kana)
 : null,
 style: ElevatedButton.styleFrom(
 shape: RoundedRectangleBorder(
 borderRadius: BorderRadius.circular(10),
),
 padding: const EdgeInsets.symmetric(vertical: 16.0),
 disabledBackgroundColor:
 isCorrectOption ? Colors.green : Colors.red.withOpacity(0.5),
 foregroundColor: Colors.black,
),
 child: Text(
 widget.direction == 'kanaToRomanji'
 ? option.kana.roumaji
 : option.kana.kana,
 style: const TextStyle(fontSize: 24, fontWeight: FontWeight.bold),
),
),
);
 },
);
 }

 Widget buildInputField() {
 return SlideTransition(
 position: _offsetAnimation,
 child: TextField(
 controller: _controller,
 decoration: InputDecoration(
 labelText: 'Input your answer',
 border: OutlineInputBorder(
 borderSide: BorderSide(
 color: !correct ? Colors.red : Colors.grey, width: 1.0),
),
 focusedBorder: OutlineInputBorder(
 borderSide: BorderSide(
 color: !correct ? Colors.red : Colors.blue, width: 2.0),

TBU in Zlín, Faculty of Applied Informatics 84

),
),
 onSubmitted: (submittedAnswer) =>
 checkAnswerForTextField(submittedAnswer),
),
);
 }

 void checkAnswerForTextField(String submittedAnswer) {
 String correctAnswerText = widget.direction == 'kanaToRomanji'
 ? correctAnswer.kana.roumaji.toLowerCase()
 : correctAnswer.kana.kana.toLowerCase();

 submittedAnswer = submittedAnswer.trim().toLowerCase();

 bool isCorrectAnswer =
 submittedAnswer == correctAnswerText && widget.testType == 'write';

 if (isCorrectAnswer) {
 _bounceController.forward(from: 0.0);
 _playConfetti();
 setState(() {
 isAnswered = true;
 correct = true;
 _controller.clear();
 });
 Future.delayed(const Duration(seconds: 1), () {
 if (mounted) {
 generateTest();
 setState(() {
 isAnswered = false;
 });
 }
 });
 } else {
 setState(() {
 correct = false;
 });
 _shakeController.forward(from: 0.0);
 }
 }

 void loadTestData() async {
 var allData = await widget.dataLoader.loadKanaData();
 testData = widget.selectedIndexes.map((index) => allData[index]).toList();
 isLoading = false;
 generateTest();
 setState(() {});
 }

 void _playConfetti() {

TBU in Zlín, Faculty of Applied Informatics 85

 var settings = Provider.of<AppSettings>(context, listen: false);
 if (settings.enableConfetti) {
 _confettiController.play();
 }
 }

 void generateTest() {
 final random = Random();
 List<Kana> allKanas = testData.expand((group) => group).toList();

 List<Kana> filteredKanas = allKanas
 .where((kana) =>
 !lastThreeSymbols.contains(widget.direction == 'kanaToRomanji'
 ? kana.roumaji
 : kana.kana) &&
 kana.roumaji.isNotEmpty &&
 kana.kana.isNotEmpty)
 .toList();

 if (filteredKanas.isEmpty) {
 lastThreeSymbols.clear();
 filteredKanas = allKanas
 .where((kana) => kana.roumaji.isNotEmpty && kana.kana.isNotEmpty)
 .toList();
 }

 if (filteredKanas.isEmpty) {
 throw Exception('No valid kanas available to generate a test.');
 }

 Kana questionKana = filteredKanas[random.nextInt(filteredKanas.length)];
 correctAnswer = KanaOption(kana: questionKana);
 questionSymbol = correctAnswer;

 updateLastSymbols(widget.direction == 'kanaToRomanji'
 ? questionKana.roumaji
 : questionKana.kana);

 Set<String> seen = {
 widget.direction == 'kanaToRomanji'
 ? questionKana.roumaji
 : questionKana.kana
 };
 List<String> options = [seen.first];

 List<Kana> optionCandidates = allKanas
 .where((kana) =>
 !seen.contains(widget.direction == 'kanaToRomanji'
 ? kana.roumaji
 : kana.kana) &&
 kana.roumaji.isNotEmpty &&

TBU in Zlín, Faculty of Applied Informatics 86

 kana.kana.isNotEmpty)
 .toList();

 while (options.length < 4 && optionCandidates.isNotEmpty) {
 Kana option = optionCandidates[random.nextInt(optionCandidates.length)];
 String optionText =
 widget.direction == 'kanaToRomanji' ? option.roumaji : option.kana;

 if (!seen.contains(optionText) && optionText.isNotEmpty) {
 options.add(optionText);
 seen.add(optionText);
 }
 }

 if (options.length < 4) {
 throw Exception('Not enough valid options to form a test.');
 }

 options.shuffle();
 currentTestOptions = options
 .map((optionText) => KanaOption(
 kana: widget.direction == 'kanaToRomanji'
 ? Kana(kana: '', roumaji: optionText, type: '')
 : Kana(kana: optionText, roumaji: optionText, type: '')))
 .toList();
 }

 void updateLastSymbols(String newSymbol) {
 if (lastThreeSymbols.length >= 3) {
 lastThreeSymbols.removeFirst();
 }
 lastThreeSymbols.addLast(newSymbol);
 }

 void checkAnswer(int index, String selectedOption) {
 String correctAnswerText = widget.direction == 'kanaToRomanji'
 ? correctAnswer.kana.roumaji
 : correctAnswer.kana.kana;

 if (selectedOption == correctAnswerText) {
 _bounceController.forward(from: 0.0);
 _playConfetti();
 setState(() {
 isAnswered = true;
 correct = true;
 correctAnswersStreak++;
 for (var option in currentTestOptions) {
 option.isEnabled = false;
 }
 });
 Future.delayed(const Duration(milliseconds: 1000), () {

TBU in Zlín, Faculty of Applied Informatics 87

 if (mounted) {
 generateTest();
 setState(() {
 isAnswered = false;
 shakeIndex = null;
 for (var option in currentTestOptions) {
 option.isEnabled = true;
 }
 });
 }
 });
 } else {
 setState(() {
 shakeIndex = index;
 currentTestOptions[index].isEnabled = false;
 correct = false;
 correctAnswersStreak = 0;
 });
 _shakeController.forward(from: 0.0);
 }
 }
}

Class Definition:

StatefulWidget Properties: Includes properties for selected Kana indices, data loader, test

type, and test direction, all required to configure and render the test page appropriately.

State Management in _TestPageState

Animation Controllers:

• Confetti, Bounce, and Shake Animations: Set up to visually respond to user interac-

tions—celebrating correct answers with confetti, providing bounce feedback on cor-

rect responses, and shaking for incorrect ones.

Initial Setup in initState():

• Loading Test Data: Asynchronously loads data using dataLoader based on selecte-

dIndexes to prepare for the test.

• Animation Initialization: Configures animations for different UI effects based on

user interactions.

Widget Building in build():

UI Composition: Uses a Stack to layer different UI components like the testing area and

confetti effects. Depending on the test type (card or write), it dynamically adjusts the display

to either show multiple-choice options or an input field for text answers.

TBU in Zlín, Faculty of Applied Informatics 88

Test Generation and Management

Avoiding Repetition with lastThreeSymbols Queue:

• Queue Management: Stores the last three symbols used in tests to prevent their im-

mediate repetition. This is managed by adding new symbols to the queue and remov-

ing the oldest when updating.

Dynamic Test Generation in generateTest():

• Random Selection: Selects a random Kana for the question from a list that excludes

recent symbols, ensuring a diverse range of characters in tests.

• Error Handling: Checks if enough valid Kana characters are available for testing,

throwing an exception if the data set is insufficient.

Answer Checking and UI Updates:

• Interaction Handling: Depending on the user’s response, updates UI elements like

animations and text displays. Correct responses trigger positive animations and in-

crease the streak count, while incorrect responses provide immediate visual feedback

through shaking animation.

Disposal of Resources in dispose():

Ensures proper cleanup of animation controllers and other resources to avoid memory leaks.

The implemented interface can be seen in Figure 23, Figure 24, Figure 25, Figure 26 and

Figure 27.

TBU in Zlín, Faculty of Applied Informatics 89

8 USER MANUAL

Upon launching the application, users arrive at the Welcome page, depicted in Figure 17.

This page presents three buttons: "Kana", "Kanji Basic", and "Settings". Clicking on the

"Kana" button directs users to the Kana page, showcasing the hiragana and katakana alpha-

bets in Figure 18 and Figure 19, respectively.

At the Kana page, users can select specific rows of alphabets to practice. Upon selecting at

least one row, a "Next" button appears, leading to the Test Settings Page (Figure 20). This

page allows users to customize their Kana test. Options include converting Kana to Romanji,

where the question is displayed in the Japanese alphabet and answers are provided in the

Latin alphabet, or Romanji to Kana, where the process is reversed.

Users can choose between a Card Test and a Write Test. In the Card Test, as shown in Figure

23, multiple-choice answers are available. Selecting the correct option triggers a celebratory

animation featuring the jumping symbol and confetti. The correct answer turns the button

green, incorrect ones turn red, and a counter tallies consecutive correct responses (Figure

25). An incorrect selection results in the button turning red and resets the correct answers

counter, as seen in Figure 24.

In the Write Test, depicted in Figure 27, users type their answers without given options.

Correct responses also trigger the bouncing symbol and confetti animation. Incorrect an-

swers cause the input box's outline to turn red, and the consecutive correct answers counter

resets, as shown in Figure 26.

Returning to the Welcome Page and navigating to the "Kanji Basic" page, users encounter

the first 80 basic Kanji characters, complete with their English translations and pronuncia-

tions (Figure 21). Heading back to the Welcome Page and accessing the "Settings" page

allows users to toggle the confetti animation on correct test answers. This settings interface

is illustrated in Figure 22.

TBU in Zlín, Faculty of Applied Informatics 90

Figure 23 Test Card Page.

TBU in Zlín, Faculty of Applied Informatics 91

Figure 24 Test Card Page Incorrect Answer.

TBU in Zlín, Faculty of Applied Informatics 92

Figure 25 Test Card Page Correct Answer.

TBU in Zlín, Faculty of Applied Informatics 93

Figure 26 Test Write Test Incorrect Answer.

TBU in Zlín, Faculty of Applied Informatics 94

Figure 27 Test Write Test Correct Answer.

TBU in Zlín, Faculty of Applied Informatics 95

CONCLUSION

This thesis has meticulously examined the challenges and opportunities associated with the

development of multiplatform educational applications, with a particular focus on language

learning. A thorough review of contemporary application development frameworks has un-

derscored the capabilities and potential of Flutter. This modern framework is adept at craft-

ing high-quality, natively compiled applications across mobile, web, and desktop platforms

from a singular codebase.

The practical component of this thesis centered on the development of a "Mobile Application

for Learning Japanese Alphabet" designed to facilitate the mastery of the Japanese alpha-

bet—including Hiragana, Katakana, and introductory Kanji—through interactive learning

experiences. This application capitalizes on Flutter's extensive feature set, including its rich

widget library and responsive framework, to develop a dynamic user interface that accom-

modates various learning styles and paces.

The development process was elaborately described, highlighting the critical considerations

essential for crafting educational software that is both engaging and effective. This encom-

passed the design of intuitive navigation, the incorporation of interactive testing mecha-

nisms, and the employment of multimedia elements to augment memorization and recall.

Fundamental functionalities, such as the test generation algorithm, which guarantees a com-

prehensive and non-repetitive learning experience, and the integration of animations to pro-

vide feedback, were meticulously implemented to enhance user engagement and educational

outcomes.

Overall, this thesis has successfully demonstrated the efficacy of cross-platform develop-

ment, specifically through the use of Flutter, in addressing distinct educational challenges.

The "Japanese Learning App" not only meets the essential requirement of providing a func-

tional tool for mastering the Japanese alphabet but also illustrates the extensive potential of

multiplatform applications to revolutionize educational methodologies and accessibility.

The outcomes of this project lay a robust foundation for future advancements, suggesting

that subsequent enhancements could include the incorporation of adaptive learning technol-

ogies, integration with more extensive Kanji databases, and the application of artificial in-

telligence to customize learning trajectories for individual users. The adept implementation

of these technologies within educational applications could profoundly transform language

learning in an increasingly digital-first environment.

TBU in Zlín, Faculty of Applied Informatics 96

In conclusion, the research and development conducted in this thesis provide critical insights

into the application of contemporary software development techniques within the realm of

educational technology, underscoring substantial opportunities for innovation and enhance-

ment in language learning applications.

TBU in Zlín, Faculty of Applied Informatics 97

BIBLIOGRAPHY

 [1] Mobile Operating System [online]. [cit. 2024-04-12]. Available from:

https://www.toppr.com/guides/computer-science/computer-fundamentals/operat-

ing-system/mobile-operating-system

 [2] Android operating system [online]. [cit. 2024-04-12]. Available from:

https://www.britannica.com/technology/Android-operating-system

 [3] iOS Explained: Apple's operating system version history, features, and iPhone ca-

pabilities [online]. [cit. 2024-04-12]. Available from: https://www.busi-

nessinsider.com/apple-ios

 [4] Windows Mobile [online]. [cit. 2024-04-12]. Available from: https://microsoft.fan-

dom.com/wiki/Windows_Mobile

 [5] History and timeline of mobile operating systems [online]. [cit. 2024-04-12]. Avail-

able from: https://www.techtarget.com/searchmobilecomputing/definition/mobile-

operating-system

 [6] Multiplatform mobile development [online]. [cit. 2024-04-12]. Available from:

https://habr.com/ru/articles/491926/

 [7] Global Digital Overview [online]. [cit. 2024-04-12]. Available from: https://data-

reportal.com/reports/digital-2020-global-digital-overview

 [8] React Native What is it [online]. [cit. 2024-04-12]. Available from:

https://habr.com/ru/articles/596183/

 [9] Flutter Architectural overview [online]. [cit. 2024-04-12]. Available from:

https://docs.flutter.dev/resources/architectural-overview

 [10] What is cross-platform mobile development [online]. [cit. 2024-04-12]. Available

from: https://www.jetbrains.com/help/kotlin-multiplatform-dev/cross-platform-

mobile-development.html

 [11] The Challenges of Cross-Platform Architecture [online]. [cit. 2024-04-12].

https://ankocorp.com/blog/the-challenges-of-cross-platform-architec-

ture#:~:text=Cross%2Dplatform%20architecture%2C%20also%20known,multi-

ple%20operating%20systems%20and%20devices.

 [12] Flutter (software) [online]. [cit. 2024-04-12]. Available from: https://en.wikipe-

dia.org/wiki/Flutter_(software)

https://www.toppr.com/guides/computer-science/computer-fundamentals/operating-system/mobile-operating-system
https://www.toppr.com/guides/computer-science/computer-fundamentals/operating-system/mobile-operating-system
https://docs.flutter.dev/resources/architectural-overview
https://ankocorp.com/blog/the-challenges-of-cross-platform-architecture#:~:text=Cross%2Dplatform%20architecture%2C%20also%20known,multiple%20operating%20systems%20and%20devices
https://ankocorp.com/blog/the-challenges-of-cross-platform-architecture#:~:text=Cross%2Dplatform%20architecture%2C%20also%20known,multiple%20operating%20systems%20and%20devices
https://ankocorp.com/blog/the-challenges-of-cross-platform-architecture#:~:text=Cross%2Dplatform%20architecture%2C%20also%20known,multiple%20operating%20systems%20and%20devices
https://en.wikipedia.org/wiki/Flutter_(software)
https://en.wikipedia.org/wiki/Flutter_(software)

TBU in Zlín, Faculty of Applied Informatics 98

 [13] What is an SDK [online]. [cit. 2024-04-12]. Available from: https://aws.ama-

zon.com/what-is/sdk/#:~:text=does%20AWS%20provide%3F-

,What%20is%20an%20SDK%3F,operating%20system%2C%20or%20programmi

ng%20language.

 [14] Dart (programming language) [online]. [cit. 2024-04-12]. Available from:

https://en.wikipedia.org/wiki/Dart_(programming_language)

 [15] Flutter apps in production (programming language) [online]. [cit. 2024-04-12].

Available from: https://flutter.dev/showcase

 [16] .NET MAUI customers showcase (programming language) [online]. [cit. 2024-04-

12]. Available from: https://dotnet.microsoft.com/en-us/platform/customers/maui

 [17] What is the Future of Flutter App Development (programming language) [online].

[cit. 2024-04-12]. Available from: https://medium.com/@glyphstergo/flutter-app-

development-in-2024-74655ccb7b2d

 [18] Building Responsive UIs in Flutter: Tips and Best Practices [online]. [cit. 2024-04-

12]. Available from: https://www.linkedin.com/pulse/building-responsive-uis-flut-

ter-tips-best-practices-steve-johnson-elq5f/

 [19] What is a React Native[online]. [cit. 2024-04-12]. Available from:

https://habr.com/ru/articles/596183/

 [20] What is a React Native? Complex Guide for 2024 [online]. [cit. 2024-04-12]. Avail-

able from: https://www.netguru.com/glossary/react-native

 [21] The new React Native architecture - what changes does it bring? [online]. [cit.

2024-04-12]. Available from: https://www.linkedin.com/pulse/react-native-new-

architecture-what-changes-brings-react-poland/

 [22] Top features of React Native application development [online]. [cit. 2024-04-12].

Available from: https://medium.com/@anuj.tomar11/top-features-of-react-native-

app-development-355eff652c00

 [23] What is .NET MAUI [online]. [cit. 2024-04-12]. Available from: https://learn.mi-

crosoft.com/en-us/dotnet/maui/what-is-maui?view=net-maui-8.0

 [24] Cross-platform application development with .NET MAUI [online]. [cit. 2024-04-

12]. Available from: https://arpitkulsh.medium.com/cross-platform-app-develop-

ment-with-net-maui-5a2d39a9cda

https://aws.amazon.com/what-is/sdk/#:~:text=does%20AWS%20provide%3F-,What%20is%20an%20SDK%3F,operating%20system%2C%20or%20programming%20language
https://aws.amazon.com/what-is/sdk/#:~:text=does%20AWS%20provide%3F-,What%20is%20an%20SDK%3F,operating%20system%2C%20or%20programming%20language
https://aws.amazon.com/what-is/sdk/#:~:text=does%20AWS%20provide%3F-,What%20is%20an%20SDK%3F,operating%20system%2C%20or%20programming%20language
https://aws.amazon.com/what-is/sdk/#:~:text=does%20AWS%20provide%3F-,What%20is%20an%20SDK%3F,operating%20system%2C%20or%20programming%20language
https://en.wikipedia.org/wiki/Dart_(programming_language)
https://flutter.dev/showcase
https://dotnet.microsoft.com/en-us/platform/customers/maui
https://medium.com/@glyphstergo/flutter-app-development-in-2024-74655ccb7b2d
https://medium.com/@glyphstergo/flutter-app-development-in-2024-74655ccb7b2d
https://www.linkedin.com/pulse/building-responsive-uis-flutter-tips-best-practices-steve-johnson-elq5f/
https://www.linkedin.com/pulse/building-responsive-uis-flutter-tips-best-practices-steve-johnson-elq5f/
https://habr.com/ru/articles/596183/
https://www.netguru.com/glossary/react-native
https://learn.microsoft.com/en-us/dotnet/maui/what-is-maui?view=net-maui-8.0
https://learn.microsoft.com/en-us/dotnet/maui/what-is-maui?view=net-maui-8.0

TBU in Zlín, Faculty of Applied Informatics 99

 [25] Revolutionizing Mobile App Development with .NET MAUI [online]. [cit. 2024-

04-12]. Available from: https://www.linkedin.com/feed/update/urn:li:activ-

ity:7112198490583158784/

 [26] What is .NET MAUI And Should You Use It [online]. [cit. 2024-04-12]. Available

from: https://assemblysoft.com/blog/post/what-is-net-maui-and-should-you-use-it

 [27] Ionic (mobile app framework) [online]. [cit. 2024-04-12]. Available from:

https://en.wikipedia.org/wiki/Ionic_(mobile_app_framework)#cite_note-14

 [28] Ionic Studio is Dead [online]. [cit. 2024-04-12]. Available from: https://www.red-

dit.com/r/ionic/comments/jkk45i/comment/gamii1b/

 [29] NativeScript [cit. 2024-04-12]. Available from: https://en.wikipedia.org/wiki/Na-

tiveScript

 [30] Kana Practice [cit. 2024-04-12]. Available from:

https://play.google.com/store/apps/details?id=com.yukiprojects.kanapractices

 [31] Cross-platform mobile frameworks used by software developers worldwide from

2019 to 2022 [cit. 2024-04-12]. Available from: https://www.statista.com/statis-

tics/869224/worldwide-software-developer-working-hours/

 [32] Japanese language [cit. 2024-04-12]. Available from: https://en.wikipe-

dia.org/wiki/Japanese_language

 [33] Basic of Hiragana, Katakana and Kanji in Japanese [cit. 2024-04-12]. Available

from: https://dzen.ru/a/ZbFqssDKaxT00G6t

 [34] json_serializable [cit. 2024-04-12]. Available from: https://pub.dev/pack-

ages/json_serializable

 [35] Start building Flutter Android apps on macOS [cit. 2024-04-12]. Available from:

https://docs.flutter.dev/get-started/install/macos/mobile-android

 [36] Homebrew install Flutter [cit. 2024-04-12]. Available from: https://formu-

lae.brew.sh/cask/flutter

 [37] Toolbox JetBrains App [cit. 2024-04-12]. Available from: https://www.jet-

brains.com/toolbox-app/

 [38] Google Chrome [cit. 2024-04-12]. Available from:

https://www.google.com/chrome/

 [39] Visual Studio Code [cit. 2024-04-12]. Available from: https://code.visualstu-

dio.com

https://en.wikipedia.org/wiki/Japanese_language
https://en.wikipedia.org/wiki/Japanese_language
https://formulae.brew.sh/cask/flutter
https://formulae.brew.sh/cask/flutter

TBU in Zlín, Faculty of Applied Informatics 100

LIST OF ABBREVIATIONS

API Application Programming Interface

HTML Hypertext Markup Language

DOM Document Object Model

MAUI Multi-platform App User Interface

SKD Software Development Kit

UI User Interface

UX User Experience

iOS iPhone Operating system

.NET Network Enabled Technology

OS Operating System

TV Television

APP Application

CI Continuous Integration

CD Continuous Deployment

CEO Chief Executive Officer

IDE Integrated Development Environment

JSON JavaScript Object Notation

ARM Advanced RISC Machine

TBU in Zlín, Faculty of Applied Informatics 101

LIST OF FIGURES

Figure 1 Flutter architectural layers [9] .. 18

Figure 2 React Native new Architecture [8] ... 21

Figure 3 .NET MAUI Architecture [23] ... 24

Figure 4 Cross-platform mobile frameworks used by software developers worldwide

from 2019 to 2022 [31] ... 27

Figure 5 MacBook Characteristics ... 33

Figure 6 Hardware requirements. [35] .. 34

Figure 7 Install Rosseta 2. .. 34

Figure 8 Homebrew install Flutter. [36] ... 35

Figure 9 Flutter Doctor. .. 35

Figure 10 JetBrains Toolbox Android Studio. .. 36

Figure 11 XCode install. ... 37

Figure 12 Install Chrome. [38] ... 37

Figure 13 Install VSCode. [39] ... 38

Figure 14 Solution Structure. .. 39

Figure 15 Assets Structure. ... 40

Figure 16 Lib Directory. ... 41

Figure 17 Welcome Page. ... 46

Figure 18 Hiragana Page. .. 53

Figure 19 Katakana Page. ... 57

Figure 20 Test Setting Page .. 62

Figure 21 Kanji Basic Page. ... 66

Figure 22 Setting App Page. ... 68

Figure 23 Test Card Page. .. 90

Figure 24 Test Card Page Incorrect Answer. .. 91

Figure 25 Test Card Page Correct Answer. .. 92

Figure 26 Test Write Test Incorrect Answer. ... 93

Figure 27 Test Write Test Correct Answer. .. 94

TBU in Zlín, Faculty of Applied Informatics 102

APPENDICES

Appendix P I: CD with the source code of the application.

